Recommendations of the International Parkinson and Movement Disorder

Society Task Force on Nomenclature of Genetic Movement Disorders

Connie Marras¹ MD, PhD, Anthony Lang MD¹, Bart P. van de Warrenburg,⁴ Carolyn Sue,³ Sarah J. Tabrizi MBChB, PhD,⁵ Lars Bertram MD,^{6,7} Katja Lohmann² PhD, Saadet Mercimek-Mahmutoglu, MD, PhD,⁸ Alexandra Durr⁹, Vladimir Kostic¹⁰, Christine Klein² MD,

¹Toronto Western Hospital Morton and Gloria Shulman Movement Disorders Centre

and the Edmond J. Safra Program in Parkinson's disease, University of Toronto,

Toronto, Canada

²Institute of Neurogenetics, University of Lübeck, Lübeck, Germany

³Department of Neurology, Royal North Shore Hospital and Kolling Institute of

Medical Research, University of Sydney, St Leonards, NSW 2065, Australia

⁴Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour,

Radboud University Medical Centre, Nijmegen, The Netherlands

⁵Department of Neurodegenerative Disease, Institute of Neurology, University

College London, UK

⁶ Platform for Genome Analytics, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany

⁷School of Public Health, Faculty of Medicine, Imperial College, London, UK

⁸Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of

Toronto, The Hospital for Sick Children, Toronto, Canada

 ⁹ Sorbonne Université, UPMC Univ Paris 06, UM 75, ICM, F-75013 Paris, France; Inserm, U 1127, ICM, F-75013 Paris, France; Cnrs, UMR 7225, ICM, F-75013 Paris, France; ICM, Paris, F-75013 Paris, France; AP-HP, Hôpital de la Salpêtrière, Département de Génétique et Cytogénétique, F-75013, Paris, France ¹⁰Institute of Neurology, School of Medicine University of Belgrade, Serbia

Corresponding author:

Christine Klein, MD

Institute of Neurogenetics

University of Luebeck

Ratzeburger Allee 160

23538 Luebeck

Germany

Email: <u>christine.klein@neuro.uni-luebeck.de</u> Tel: +49-451-2903353 Fax: +49-451-2903355

Email addresses of authors

Katja Lohmann: katja.lohmann@neuro.uni-luebeck.de

Christine Klein: <u>christine.klein@neuro.uni-luebeck.de</u>

Anthony Lang: lang@uhnresearch.ca

Connie Marras: <u>cmarras@uhnresearch.ca</u>

Carolyn Sue: carolyn.sue@sydney.edu.au

Sarah Tabrizi: s.tabrizi@ucl.ac.uk

Bart van de Warrenburg: bart.vandewarrenburg@radboudumc.nl

Vladimir S. Kostić: <u>vladimir.s.kostic@gmail.com</u> Saadet Mahmutoglu: saadet.mahmutoglu@sickkids.ca Alexandra Durr: alexandra.durr@upmc.fr

Running title:

Word count text:

Abstract: 160

Title:

References:

Tables:

Figures:

Search terms:

Author Roles

1. Research project: A. Conception, B. Organization, C. Execution;

2. Manuscript: A. Writing of the first draft, B. Review and Critique;

Author contributions:

Connie Marras: 1A, B, C; 2A Katja Lohmann: 1A, 1C, 2B Anthony Lang: 1A, 1C, 2B Christine Klein: 1A, B, C; 2B Carolyn Sue: 1A, 1C, 2B Bart van de Warrenburg: 1A, 1C; 2A, 2B Vladimir Kostic: 1A, 1C, 2B Sarah Tabrizi: 1C, 2B Saadet Mahmutoglu: 1A, 2B Alexandra Durr: 2B

Financial Disclosures of all authors (for the preceding 12 months)

Christine Klein

Stock Ownership in medically- related fields	None
Consultancies	Medical advisor to Centogene
Advisory Boards	None

Partnerships	None
Honoraria	None
Grants	The Hermann and Lilly Schilling Foundation; the BMBF (01GI0201); the German Research Foundation; the European
	Community (FP7); intramural funds from the University of Luebeck
Intellectual Property Rights	None
Expert Testimony	None
Employment	University of Luebeck
Contracts	None
Royalties	None
Other	None

Connie Marras

Stock Ownership in medically- related fields	None
Consultancies	None
Advisory Boards	None
Partnerships	None
Honoraria	Honoraria for teaching from EMD Serono
Grants	The Michael J Fox Foundation, Canadian

	Institutes of Health Research, National
	Parkinson Foundation and the Parkinson
	Society Canada; Site PI for clinical trial
	sponsored by Allon Therapeutics
Intellectual Property Rights	None
Expert Testimony	None
Employment	University Health Network
Contracts	None
Royalties	None
Other	None

Sarah J Tabrizi

Sarah J Tabrizi Stock Ownership in medically- related fields	None
Consultancies	UCL Consultancy with Siena Biotech, Simon Kucher Partnership, Roche, Takeda Pharmaceuticals International, Novartis, Sanofi-Aventis, Isis Pharmaceuticals Inc., GSK and TEVA Pharmaceuticals. All honoraria paid for these consultancies and advisory boards goes to University College London, Sarah J Tabrizi's employer.
Advisory Boards	Isis Pharma, Roche, Siena Biotech, Teva Pharma
Partnerships	None

Honoraria	None
	EU FP7 Health call,
	Medical Research Council UK,
	CHDI Foundation,
	Huntington Disease Association of the UK,
Grants	Dementia and Neurodegenerative Disease Network
	υк,
	European Huntington's Disease Network,
	UCL/UCLH Biomedical Research Centre
	BBSRC
Intellectual Property Rights	None
Expert Testimony	None
Employment	University College London
Contracts	None
Royalties	None
Other	None

Carolyn Sue

Stock Ownership in medically- related fields	None
Consultancies	None
Advisory Boards	None
Partnerships	None

Honoraria	None
Grants	National Health and Medical Research Council (of Australia), Australian Brain Foundation, Hereditary Spastic Paraplegia Foundation
Intellectual Property Rights	None
Expert Testimony	None
Employment	Northern Sydney Local Health District
Contracts	None
Royalties	None
Other	None

Anthony Lang

Stock Ownership in medically- related fields	None
	Abbvie, Allon Therapeutics, Avanir
	Pharmaceuticals, Biogen Idec, Boerhinger-
Consultancies	Ingelheim, Ceregene, Lilly, Medtronic,
	Merck, Novartis, NeuroPhage
	Pharmaceuticals, Teva and UCB
Advisory Boards	None
Partnerships	None

Honoraria	Teva, UCB, AbbVie
Grants	Brain Canada, Canadian Institutes of Health Research, Edmond J Safra Philanthropic Foundation, Michael J. Fox Foundation,
	Brain Institute, Parkinson Society Canada, Tourette Syndrome Association, W. Garfield Weston Foundation.
Intellectual Property Rights	None
Expert Testimony	Cases related to the welding industry.
Employment	University of Toronto
Contracts	None
Royalties	Saunders, Wiley-Blackwell, Johns Hopkins Press, Cambridge University Press.
Other	None

Name: Katja Lohmann			
Stock Ownership in medically- related fields	None	Intellectual Property Rights	None
Consultancies	None	Expert Testimony	None
Advisory Boards	None	Employment	University of Luebeck
Partnerships	None	Contracts	None
Honoraria	None	Royalties	None
Grants	German Research Foundation, Dystonia Coalition	Other	None

Bart van de Warrenburg

Stock Ownership in medically- related fields	None
Consultancies	None
Advisory Boards	None
Partnerships	None

Honoraria	None
Grants	Gossweiler Foundation, Royal Dutch Societyfor Physical Therapy, BBRMI-NL,Wetenschapsfonds Dutch dystonia society,Radboud University Medical Centre
Intellectual Property Rights	None
Expert Testimony	None
Employment	Radboud University Medical Centre
Royalties	None
Other	None

Saadet Mercimek-Mahmutoglu

Stock Ownership in medically- related fields	None
Consultancies	None
Advisory Boards	None
Partnerships	None
	None
Honoraria	
Grants	Nopo
	None
Intellectual Property Rights	None
Expert Testimony	None
Employment	The Hospital for Sick Children
Contracts	None
Royalties	None
Other	None

Alexandra Durr

Stock Ownership in medically- related fields	None
Consultancies	None

Advisory Boards	None
Partnerships	None
Honoraria	Pfizer Inc.
Grants	Pfizer Inc., Gossweiler Foundation, ULC, European Union
Intellectual Property Rights	None
Expert Testimony	None
Employment	Assistance Publique-Hôpitaux de Paris/Pierre et Marie Curie University
Contracts	None
Royalties	None
Other	None

Vladimir S. Kostić

Stock Ownership in medically- related fields	None		
Consultancies	None		
Advisory Boards	Abvie (regional)		
Partnerships	None		
Honoraria	Novartis, Boehringer Ingelheim, Roche, Lundbeck and Glaxo-Smith-Kline		
Grants	Ministry of Education and Science, Republic of Serbia (project #ON175090) Serbian Academy of Sciences and Arts (no 40070)		
Intellectual Property Rights	None		
Expert Testimony	None		
Employment	University of Belgrade		
Contracts	None		
Royalties	None		
Other	None		

Lars Bertram

Stock Ownership in medically- related fields	None
Consultancies	None
Advisory Boards	ADNI-2
Partnerships	
Honoraria	
Grants	German Federal Ministry for Education and Research (BMBF), EU FP7, and the Cure Alzheimer's Fund.
Intellectual Property Rights	
Expert Testimony	
Employment	University of Luebeck, Germany Imperial College London, UK
Contracts	
Royalties	
Other	

Abstract

The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders, including erroneously assigned loci, duplicated loci, missing symbols, missing loci, unconfirmed loci, combining causative genes and risk factor genes in the same list and discordance between phenotype and list assignment. In this paper we report on the recommendations of the International Parkinson and Movement Disorder Society (MDS) Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation and basal ganglia calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.

Introduction

The system of locus symbols (e.g. DYT1) was originally established to specify chromosomal regions that had been linked to a familial disorder where the gene was yet unknown.¹ This system has been adopted by clinicians and researchers to provide names for the condition, as well as the chromosomal region, and use of these names is commonplace in medical parlance, particularly in the field of movement disorders. However, as our techniques of genetic research and our knowledge have evolved, a number of problems with the system of designating locus symbols and with its use have arisen. These problems have been described elsewhere² but briefly, they include 1) an inability to distinguish disease-causing genes from weaker genetic risk factors, 2) an inconsistent relationship between list membership and movement disorder phenotype, 3) failure of some established genetic movement disorders to be assigned a locus symbol, 4) more than one symbol being assigned for the same disorder, 5) unconfirmed associations between a gene or locus and a movement disorder, 6) erroneous labels resulting from laboratory errors or mistakes of phenotypic assignment and 7) designating symbols in the absence of any known locus or gene. Together, these problems make the locus symbols unsuitable as a reference list of genetically determined movement disorders. Unfortunately, it is currently used as such. This state of affairs was the justification for the International Parkinson and Movement Disorder Society (MDS) Task Force for Nomenclature of Genetic Movement Disorders. This report presents a recommendation for a new system for naming of genetically determined movement disorders by the Task Force.

The Task Force and its mandate

The MDS Task Force for the Nomenclature of Genetic Movement Disorders first convened in May 2012. The mandate of the Task Force was to generate recommendations for revising the system of naming of genetic movement disorders, addressing the problems summarized above. The Task Force included clinical neurologists and genetic experts covering the spectrum of movement disorders as well as a metabolic geneticist (S M-M). Input was sought from experts in medical fields other than movement disorders, where naming systems for genetically determined disorders were in place (e.g. epilepsy). Editors of general medical and neurology journals were also queried regarding their requirements from authors for assigning names for newly discovered genetic conditions or their associated genes. With this background, the Task Force agreed upon a set of rules that should govern the naming based upon a set of previously published recommendations authored by several members of the Task Force.² These previously published recommendations were developed into more concrete rules. We then proceeded to apply the rules to classes of genetically determined movement disorders. The classes are phenomenologically defined (e.g. ataxias, dystonias), or defined by a distinctive imaging (e.g. basal ganglia calcification) or, theoretically, laboratory feature. To date we have not found the need to classify on any laboratory features. The recommendations and resulting lists have been made available to the membership of the MDS through the Society's website and feedback was solicited from the membership. The recommendations were also shared with representatives from GeneTests and OMIM, two compendia of genetic phenotypes for commentary and suggestions.

Commented [**CR1**]: CM: Their input will be sought after asking the MDS membership for their feedback.

Recommendations

1. Include only genes where genetic testing is possible.

Originally, locus symbols represented chromosomal regions. However, if we know only the chromosomal region associated with a particular phenotype there are no direct implications for diagnostic testing or for (basic) research applications. Therefore, a disorder should only be listed once the causative gene is found. The exception to this is when a founder haplotype is diagnostic, as in the case of X-linked dystonia parkinsonism ("Lubag"). In this case, the disorder should be a member of the list.

2. Replace number suffixes by the gene name.

We recommend that the symbol prefix be followed by the gene name (e.g. DYT-SGCE [currently DYT11]). This naming system conveys the responsible gene and maintains the connection between the phenotype (dystonia) and the gene. Remembering a numerical designation (e.g. DYT1) is obviously easier than remembering complex gene names. However, given the major sources of error and confusion that have arisen in the numerical listing we feel that this new approach is justified. In addition, the exponentially growing number of identified causative genes will likely make remembering all but the most clinically important examples impossible for most. Referring to reference tables will become increasingly necessary, and with this vision, more informative names and rigorous review for inclusion are preferred.

3. List disease-causing genes separately from risk factor genes.

A locus symbol prefix (e.g. PARK) would be conferred only upon disease-causing genes (causing monogenic disorders) and not upon risk factors, recognizing the diagnostic value of disease-causing mutations. The PD GENE website (http://www.pdgene.org), developed by the Max Planck Institute for Molecular Genetics, the Michael J. Fox Foundation and the Alzheimer Research Forum provides a resource for cataloguing genetic risk factors for Parkinson's disease and for continuously evaluating them in an ongoing meta-analysis. When disease-causing mutations and risk factors arise from the same gene (e.g. *SNCA*), such genes should be represented on both lists.

We recognize that the distinction between disease-causing and risk-conferring is not clear in many instances; rather, these attributes mark two ends of a continuum of risk. Furthermore, the decision into which category a particular genetic variation falls is complicated when penetrance varies by age, sex or ethnicity. As there is currently no standard as to what level of penetrance of a mutation (or increase in risk) is sufficient to consider a genetic mutation as being disease-causing, we have not designated a specific threshold. Rather, we have accepted the designation (disease-causing or risk factor) that prevails in the field for each gene. As discussed below, a criterion-based method of making such distinctions would be of value to the field.

4. Raise the threshold of evidence before assigning locus symbols.

To avoid inaccuracies and redundancies that currently permeate the lists of locus symbols, a level of evidence for genotype-phenotype association must be met prior to conferring a place in the list. The US National Human Genome Research Institute convened a working group to establish guidelines for investigating causality of sequence variants in human disease.³ As outlined in the guidelines, four major pieces of evidence lend support to causality: 1. The presence of the variant in multiple unrelated affected individuals, 2. Evidence for segregation or statistical association of the variant with disease 3. The variant should be conserved across different species and 4. The variant should be predicted to alter the normal biochemical effect of the gene product, if possible as supported by functional evidence in human tissue or well-established cellular or animal models. Considering their guidelines a gene-by-gene assessment of the sum of the evidence was considered a most appropriate approach for deciding whether or not a gene warrants a place on the lists.

5. Assign appropriate phenotype-prefix relationships.

For a gene to be a member of a particular phenotypic list, the phenotype (e.g. dystonia in the case of DYTs) should be a *consistent* and *prominent* feature of the disease linked to mutations in that gene. When more than one movement disorder is a prominent and consistent feature, a double prefix could be assigned (e.g. *DYT/PARK*-ATP1A3) and the symbol would belong to more than one list. Disorders which can *unusually* present with an alternative movement disorder as the predominant manifestation would appear cross-referenced to the list of the alternative phenotype (e.g. SCA17 occasionally presenting as a choreic disorder, thus it is cross-referenced to the chorea list) but the prefix would reflect the phenotype that is consistent with in the majority of cases. When a genetic mutation can unusually manifest with a movement disorder as the predominant manifestation but the usual phenotype is not a movement disorder (e.g. C9orf72 mutations

presenting as a predominantly choreic disorder instead of the usual dementiapredominant syndrome), we have not included these disorders on the list. The focus of these lists is on disorders that have movement disorders as consistent and predominant features.

Applying the recommendations

For each class of movement disorder we present the new list applying the principles we have laid out above. For contrast we have provided, as supplementary material, the list of existing locus symbols for each class of disorder, including a note in the last column indicating the problems with the entry, where applicable. We have included in the list of existing symbols those not listed by the Human Genome Nomenclature Committee (http://www.genenames.org/), reflecting the reality that many locus symbols have come into use bypassing this official channel. In our revised system we have assigned symbols to disorders known to be genetically determined but never assigned a locus symbol, in order to provide a complete list; Wilson disease as an example. In the same spirit we have introduced to these lists a number of pediatric metabolic disorders.

Genetically determined movement disorders

Genetically determined parkinsonism

A total of 20 genes and loci have been assigned a 'PARK' designation (Supplementary Table 1). For five of these, the relationship is unconfirmed (PARK3,5,11,13,18) and three fall into the 'risk factor' category (PARK10,12,16). PARK1 and PARK4 are identical, both referring to the SNCA gene.

According to the revised system, there are eighteen confirmed monogenic conditions where parkinsonism is a consistent and predominant feature (Table 1). In eight of the forms of genetic parkinsonism mentioned below, dystonia is a prominent feature. To guide clinicians we have divided these into three categories: 1) Those that are associated with a clinical picture closely resembling that of idiopathic Parkinson disease, 2) Those that present with parkinsonism similar to Parkinson disease but of young onset and 3) Complex forms that have parkinsonism as a key clinical feature but in addition present with atypical, multisystem features or other movement disorders. We have provided references for the more complex disorders that may not have been included in previous lists of this kind; for others we refer readers to a recent review.^{4, 5} Of note, we have chosen not to include GBA as a monogenic cause of parkinsonism in the PARK list but rather consider it a strong genetic risk factor for Parkinson disease (similar to ApoE4 in Alzheimer disease) given its low, age-dependent prevalence.⁶

Table 1: The proposed new list of hereditary parkinsonism

New	Clinical clues	Inheri-	Locus
designation and		tance	symbol
Phenotypic			
subgroup			

Classical parkinsonism			
PARK-SNCA	Missense mutations cause classical parkinsonism. Duplication or triplication mutations in this gene cause early onset parkinsonism with prominent dementia.	AD	PARK1
PARK-LRRK2		AD	PARK8
PARK-VPS35		AD	PARK17
Early onset parki	nsonism		
PARK-PARKIN*	Often presents with dystonia, often in a leg	AR	PARK2
PARK-PINK1	Psychiatric features common	AR	PARK6
PARK-DJ1		AR	PARK7
Atypical parkinso	nism or complex phenotypes		
PARK-ATP13A2	Kufor Rakeb syndrome; Juvenile or early onset parkinsonism, vertical gaze palsy, minifacial-faucial myoclonus, pyramidal signs.	AR	PARK9
NBIA/DYT/PARK	PLA2G6-associated	AR	NBIA2,
-PLA2G6	neurodegeneration (PLAN) Iron accumulation: GP, SN in some;		PARK14

	adults may have striatal involvement;		
	1/2 INAD and majority of adult-onset		
	lack imaging BIA on MRI.		
	Infantile (INAD) phenotype:		
	Developmental delay, hypotonia,		
	ataxia, pyramidal signs, optic atrophy,		
	sensorimotor axonal neuropathy		
	seizures.		
	Adult phenotype: Dystonia-		
	parkinsonism, pyramidal signs,		
	cognitive, psychiatric features		
PARK-FBX07	Early onset parkinsonism with	AR	PARK15
	pyramidal signs		
PARK-DNAJC6	Occasional mental retardation and	AR	PARK19
	seizures		
PARK-SYNJ1	May have seizures, cognitive decline,	AR	PARK20
	abnormal eye movements, and		
	dystonia		
DYT/PARK-	Rapid onset dystonia-parkinsonism	AD	DYT12
ATP1A3**			
DYT/PARK-	Dystonia and parkinsonism	Х-	DYT3
TAF1		linked	

DYT/PARK-	Guanine triphosphate cyclohydrolase de	ficiency:	
GCH1	Milder form: Childhood or adolescent	AD	DYT5a
	onset dopa-responsive dystonia, adult		
	onset parkinsonism		
	Severe form: generalized dystonia and	AR	none
	parkinsonism, infantile onset global		
	developmental delay, with or without		
	hyperphenylalaninemia ⁷		
DYT/PARK- <i>TH</i>	Tyrosine hydroxylase deficiency ^{,8}		
			-
	Mild form: dopa-responsive infantile to	AR	DYT5b
	early childhood onset dystonia		
	Severe form: infantile onset dystonia	AR	None
	and parkinsonism with truncal		
	and parkinsonism		
	Very severe form: infantile onset	AR	None
	dystonia, oculogyric crises, severe		
	global developmental delay, truncal		
	hypotonia parkinsonism		
DYT/PARK-SPR	Sepiapterin reductase deficiency,	AR	None
	infantile to childhood onset generalized		
	dystonia, parkinsonism, global		

	developmental delay, truncal		
	hypotonia, spasticity ⁹		
DYT/PARK-	Dihydropterine reductase deficiency:	AR	None
QDPR	dystonia, parkinsonism, infantile onset		
	global developmental delay, truncal		
	hypotonia with		
	hyperphenylalaninemia ¹⁰		
DYT/PARK- <i>PT</i> S	Pyruvoyl-tetrahydropterin synthase	AR	None
	deficiency: dystonia, parkinsonism,		
	usually neonatal onset irritability,		
	truncal hypotonia, infantile onset global		
	developmental delay with		
	hyperphenylalaninemia ¹⁰		
DYT/PARK-	Dopamine transporter deficiency:	AR	None
SLC6A3	classical presentation with		
	parkinsonism-dystonia, infantile onset		
	global developmental delay, truncal		
	hypotonia,; atypical presentation with		
	juvenile onset parkinsonism ¹¹		
DYT/PARK-	Childhood onset dystonia or late onset	AR	None
SLC30A10	parkinsonism, hypermanganesemia,		
	polycythemia, and chronic liver		
	disease ¹²		

INAD: Infantile NeuroAxonal Dystrophy

*PARKIN has not been assigned a gene name thus the name for the protein product is used instead.

** Mutations in this gene also causes alternating hemiplegia of childhood and CAPOS (Cerebellar ataxia, pes cavus, optic atrophy and sensorineural hearing loss) syndrome.

Genetically determined dystonia

There are currently 25 locus symbols with a numeric DYT designation (Supplementary Table 2).¹³ However, a number of these currently await independent confirmation (DYT2,3,4,7,13,15,16,17,20,21,23,24) and several others have been shown to be erroneously designated (DYT14, 18 and 19). One of these (DYT22) has never been linked to a locus, gene or clinical syndrome to our knowledge. Only eight of these disorders appear on the newly proposed list (Table 2). In addition we have conferred a 'DYT' prefix upon Wilson disease and Lesch Nyhan syndrome and a number of other infantile and childhood onset disorders which were never previously designated.

An international panel of dystonia experts recently developed a consensus update of the definition and classification of dystonia. The two main axes of dystonia classification currently considered most relevant are clinical and etiological.¹⁴ On clinical grounds, the updated classification proposes characterization by age of onset, body distribution, temporal pattern and association with additional features (isolated or combined with other symptoms). Formerly, isolated dystonia was referred to as primary dystonia. When additional features were primarily other movement disorders this was referred to as dystonia plus, and is now referred to as combined dystonia. When dystonia predominates the clinical picture but this occurs in the context of a complex phenotype including symptoms other than movement disorders (formerly secondary dystonia), this is now referred to as complex dystonia. The proposed new list is thus divided into isolated, combined and complex dystonias, following the suggested scheme. As almost all known forms of dystonia are inherited in an autosomal dominant fashion, unlike in parkinsonism, mode of transmission does not appear to be a useful feature to categorize familial dystonias.

Table 2: The proposed new list of isolated and combined hereditary dystonia

New designation	Clinical clues	Inheritanc	Locus
and phenotypic		e pattern	symbol
subgroup			
Isolated dystonias			
DYT-TOR1A	Early-onset generalized dystonia	AD	DYT1
DYT-THAP1	Adolescent-onset dystonia of mixed type	AD	DYT6
DYT-GNAL	Adult onset cranial-cervical dystonia	AD	DYT25
DYT-PRKRA	Rare form of usually generalized dystonia, parkinsonism inconsistent	AR	DYT16

Combined dystoni	as (disorders where dystonia coex	ists with othe	er
movement disorde	ars and each are consistent and pro	minent char	actoristics
	ers and each are consistent and pre		
of the disorder)			
DYT/PARK-GCH1	Guanine triphosphate cyclohydrolas	e deficiency	
	Milder form: Childhood or	AD	DYT5a
	adolescent onset dopa-responsive		
	dystonia, adult onset parkinsonism		
	Severe form: generalized dystonia	AR	None
	and parkinsonism, infantile onset		
	global developmental delay, with		
	or without hyperphenylalaninemia ⁷		
DYT/PARK-TH	Tyrosine hydroxylase deficiency: ⁸		
	Mild form: dopa-responsive	AR	DYT5b
	infantile to early childhood onset	/	2
	dystonia		
	Severe form: infantile onset	AR	None
	dystonia and parkinsonism with		
	truncal hypotonia, global		
	developmental delay and		
	parkinsonism		

	Very severe form: infantile onset	AR	None
	dystonia, oculogyric crises, severe		
	global developmental delay,		
	truncal hypotonia, parkinsonism		
DYT/PARK-	Rapid-onset dystonia-	AD	DYT12
ATP1A3	parkinsonism, chorea in later life**		
DYT/PARK-TAF1*	Dystonia-parkinsonism	X-linked	DYT3
DYT-SGCE	Myoclonus-dystonia	AD	DYT11
Complex dystonias	s (where dystonia dominates the cli	nical picture	but this
occurs in the conte	ext of a complex phenotype includi	ng symptom	s other
than movement dis	sorders)		
DYT/CHOR-HPRT	Lesch-Nyhan Syndrome. Infantile	X-linked	None
	onset choreaathetosis, dystonia,	recessive	
	global developmental delay, self-		
	injuries behaviour		
DYT/CHOR-T2	Mitochondrial acetoacetyl-CoA	AR	none
	thiolase deficiency: metabolic		
	decompensation and basal ganglia		
	injury during acute stress resulting		
	in dystonia and chorea ¹⁵		
DYT/CHOR-GCDH	Glutaric aciduria type I,	AR	None
	macrocephaly, metabolic		
	decompensation and basal ganglia		
	injury during acute stress resulting		

	in dystonia and chorea ¹⁶		
DYT-DDC	Aromatic amino acid	AR	None
	decarboxylase deficiency: Infantile		
	onset generalized dystonia, may		
	have chorea, global developmental		
	delay, truncal hypotonia,		
	oculogyric crises ¹⁷		
DYT/PARK-	Childhood onset dystonia or late	AR	None
SLC30A10	onset parkinsonism,		
	hypermanganesemia,		
	polycythemia, and chronic liver		
	disease ¹²		
DYT/PARK-SPR	Sepiapterin reductase deficiency,	AR	None
	infantile to childhood onset		
	generalized dystonia,		
	parkinsonism, global		
	developmental delay, truncal		
	hypotonia, spasticity ⁹		
DYT/PARK-QDPR	Dihydropteridine reductase	AR	None
	deficiency: infantile onset dystonia,		
	parkinsonism, global		
	developmental delay, truncal		
	hypotonia, with		
	hyperphenylalaninemia ¹⁰		

DYT/PARK-PTS	Pyruvoyl-tetrahydropterin synthase	AR	None
	deficiency: premature delivery,		
	dystonia, parkinsonism, usually		
	neonatal onset irritability, truncal		
	hypotonia, infantile onset global		
	developmental delay, with		
	hyperphenylalaninemia ¹⁰		
DYT/PARK-	Dopamine transporter deficiency	AR	None
SLC6A3	classical presentation with infantile		
	onset parkinsonism-dystonia,		
	global developmental delay,		
	truncal hypotonia. Atypical		
	presentation with juvenile onset		
	parkinsonism ¹⁷		
NBIA/DYT-PANK2	Pantothenate kinase- associated	AR	NBIA1
	neurodegeneration (PKAN)		
	Iron accumulation: GP - Eye of the		
	tiger,		
	Phenotype: Dystonia, spasticity,		
	parkinsonism, chorea, psychiatric		
	cognitive decline, gaze palsy,		
	pigmentary retinopathy		
NBIA/DYT/PARK-	PLA2G6-associated	AR	NBIA2,

PLA2G6	neurodegeneration (PLAN)		PARK14	
	Iron accumulation: GP, SN in			
	some; adults may have striatal			
	involvement; 1/2 INAD and majority			
	of adult-onset lack imaging BIA on			
	MRI.			
	Infantile (INAD) phenotype:			
	Developmental delay, hypotonia,			
	ataxia, pyramidal signs, optic			
	atrophy, sensorimotor axonal			
	neuropathy seizures.			
	Adult phenotype: Dystonia-			
	parkinsonism, pyramidal signs,			
	cognitive, psychiatric features			
DYT-ATP7B	Wilson disease: dystonia with	AR	None	
	occasionally predominant chorea			
	and/or parkinsonism. Liver			
	disease.			
DYT-SLC19A3	Biotin-responsive basal ganglia	AR	None	•
	disease, childhood onset dystonia,			
	confusion, generalized seizures,			
	ataxia, facial palsy,			
	ophthalmoplegia, dysphagia ¹⁸			

DYT-TIMM8A	Mohr-Tranebjaerg syndrome,		
	infantile, childhood to adult onset		
	dystonia, deafness ¹⁹		
DYT-mtND6	Homoplasmic G14459A mutation:	Mitochondr	None
	Childhood onset dystonia, juvenile	ial	
	onset subacute visual loss (Leber		
	hereditary optic neuropathy)20		

INAD: infantile NeuroAxonal Dystrophy

*Due to a founder effect, genetic testing is possible. The pathogenicity of the TAF1 gene is not absolutely confirmed, however testing of selected variants in this gene is sufficient for the diagnosis.

**Mutations in this gene also cause alternating hemiplegia of childhood and CAPOS (Cerebellar ataxia, pes cavus, optic atrophy and sensorineural hearing loss) syndrome.

Genetically determined paroxysmal movement disorders

There are a number of movement disorders whose symptoms occur episodically. These include the paroxysmal dyskinesias and episodic ataxias. Although these disorders could be incorporated into other lists following a phenomenologic classification system, we have suggested that they be defined according to their distinctive episodic nature. The movement disorders they display are often mixed, and overlap in phenomenology is increasingly recognized.²¹ Therefore we have proposed a new category of "Paroxysmal Movement Disorders, or PxMD". The paroxysmal dyskinesias^{22, 23} were previously designated "DYT" loci¹³ (see Supplementary Table 2). The previous list of 7 episodic ataxias is shown in Supplementary table 3.²⁴ Four of these remain unconfirmed (EA3,4,5,7). Table 3 shows the proposed new list of paroxysmal movement disorders. We have conferred a PxMD prefix upon SLC2A1 mutations (glucose transporter type 1 deficiency) even though mutations in this gene more frequently cause a syndrome of seizures and developmental delay that is not dominated by paroxysmal movement disorders. It is a minority of cases that display a predominant paroxysmal ataxia, dystonia and/or chorea.²⁵ Because this is a major consideration in the differential diagnosis of paroxysmal movement disorders and indeed the only gene known to be responsible for the paroxysmal exertion-induced dyskinesia phenotype we felt that leaving this out to be problematic from the perspective of a clinician considering a patient with a paroxysmal exertion-induced dyskinesia. A disorder not included in the tables, known as glycine encephalopathy, deserves mention. This disorder can be caused by mutations in three different genes and can present with intermittent chorea precipitated by intercurrent illness.²⁶ Although intermittent chorea can be the predominant phenotype in individuals with such mutations, these variants usually present with developmental delay as the predominant symptom. Since intermittent chorea is not a consistent phenotype it has not been given a place on the list of genetically determined movement disorders.

Table 3: The proposed new list of paroxysmal movement disorders

New designation	Clinical clues	Inheri-	Locus
		tance	symbol
Predominant dyskinesias			

PxMD-PRRT2	Paroxysmal kinesigenic	AD	DYT10 or
	dyskinesia, rarely		DYT19
	paroxysmal ataxia		
PxMD-MR-1	Paroxysmal non-	AD	DYT8
	kinesigenic dyskinesia		
PxMD-SLC2A1	Paroxysmal exertion-	AD	DYT18/DYT9
	induced dyskineisa*		
Predominant ataxias			
PxMD-KCNA1	Paroxysmal ataxia with	AD	EA1
	interictal myokymia		
PxMD-CACNA1A	Paroxysmal ataxia with variable seizures, vertigo, headache, weakness	AD	EA2
PxMD-SLC1A3	Paroxysmal ataxia with seizures, migraine, alternating hemiplegia	AD	EA6
PxMD-PDHA1	Pyruvate dehydrogenase E1- alpha deficiency with infantile to childhood onset episodic ataxia, global developmental delay ²⁷	X-linked	None
PxMD-SLC6A19	Hartnup disorder with paroxysmal ataxia, cognitive dysfunction, skin rash, psychosis ²⁸	AR	None

*A phenotype of infantile onset dystonia, chorea, global developmental delay,

epilepsy, acquired microcephaly and ataxia is the most common presentation of

mutations in this gene

Genetically determined dominant cerebellar ataxia

The dominant spinocerebellar ataxias (SCAs) have previously been (and are still being) referred to as autosomal dominant cerebellar ataxias (ADCA). The problems with the current SCA list are numerous, i.e. missing genes or unconfirmed associations (SCA4,18,20,25,26,30,32,34,37,40), unidentified loci (SCA9), recessive or congenital disorders (SCA24, 29), and allelic diseases (SCA4/SCA31, SCA019/SCA22 and SCA15/SCA16). Supplementary Table 4 lists these locus symbols and their current status²⁹. Also, some dominantly inherited ataxias have not been assigned a SCA locus, e.g. Dentato-rubro-pallidoluysian atrophy (DRPLA) and dominant ataxia combined with narcolepsy and deafness due to DNMT1 mutations. While some SCAs are pure cerebellar disorders, others present with a plethora of other neurological symptoms, including other movement disorders. Occasionally, individuals with an "SCA" can be affected by an 'other' movement disorder as the only or clearly predominant disease feature.³⁰ Examples of this are parkinsonism in SCA2 and chorea in SCA17. These disorders are cross-referenced to the lists of the alternative phenotype. We here propose a list for the dominant ataxias (Table 4), but as next steps we need similar proposals for the recessive and congenital. We suggest that this should be taken up by experts from within the ataxia field in close collaboration with members of this task force.

Table 4: The proposed new list for the dominant spinocerebellar ataxias (SCAs)

New	Clinical clues	Inheritance	Locus Symbol
designation			

and			
phenotypic			
subgroup			
Pure or relativel	y pure ataxia		
SCA-SPTBN2	Pure ataxia	AD	SCA5
SCA-CACNA1A	Pure ataxia	AD	SCA6
SCA-TTBK2	Pure ataxia	AD	SCA11
SCA-PDYN	Pure ataxia	AD	SCA23
SCA-ATXN8OS	Relatively pure; pyramidal	AD	SCA8
	signs, neuropsychiatric		
	features		
SCA-PPP2R2B	Relatively pure; head and	AD	SCA12
	hand tremor		
SCA-PRKCG	Relatively pure; sometimes	AD	SCA14
	other movement disorders		
	(dystonia, myoclonus)		
SCA-ITPR1	Relatively pure; myoclonus,	AD	SCA15/16
	dystonia		
SCA-KCND3	Relatively pure; hand tremor,	AD	SCA19/22
	peripheral neuropathy,		
	cognitive disturbances		

SCA-FGF14	Relatively pure; early-onset	AD	SCA27
	hand tremor, orofacial		
	dyskinesia, behavioural		
	problems		
SCA-TGM6	Relatively pure; pyramidal	AD	SCA35
	features, cervical dystonia		
SCA-ELOVL5	Relatively pure; neuropathy	AD	SCA38
Complex Ataxia	(ataxias that can often have o	ther neurolog	ical features)
			T
SCA-ATXN1	Marked non-ataxia features;	AD	SCA1
	can have dominant		
	choreapyramidal features,		
	peripheral neuropathy,		
	ophthalmoplegia		
SCA-ATXN2	Marked non-ataxia features,	AD	SCA2
	can have predominant		
	parkinsonism or chorea;		
	neuronopathy, dementia,		
	myoclonus		
SCA-ATXN3	Marked non-ataxia features;	AD	SCA3
	can have predominant		
	parkinsonism, dystonia,		
	chorea, spasticity,		
	neuropathy, lower motor		

	neuron involvement		
SCA-ATXN7	Marked visual loss	AD	SCA7
SCA-ATXN10	Seizures	AD	SCA10
SCA-TBP	Marked non-ataxia features, can present with predominant chorea. May be HD-like	AD	SCA17, HDL4
SCA-TMEM240	Cognitive impairment / mental retardation	AD	SCA21
SCA-AFG3L2	Ophthalmoparesis	AD	SCA28
SCA-BEAN1	Hearing loss, vertigo	AD	SCA31
SCA-NOP56	Motor neuron involvement	AD	SCA36
SCA-DNMT1	Sensorineural deafness, narcolepsy, dementia	AD	None
SCA-ATN1	Dentatorubropallidoluysian atrophy (DRPLA): Myoclonus, chorea, parkinsonism, dementia, supranuclear gaze palsy	AD	None
SCA/HSP- VAMP1	Spastic ataxia, supranuclear upgaze limitation	AD	SPAX1

SCA: spinocerebellar ataxia; AD: autosomal dominant

Genetically determined chorea

Chorea is a prominent clinical manifestation of Huntington disease (HD), and in four look-alike disorders, upon which the prefix HDL (Huntington Disease-Like) has been conferred (HDL1-4, Supplementary Table 5).³¹ The gene associated with the HDL3 locus is not yet known and HDL4 refers to the same gene as spinocerebellar ataxia 17, i.e. the *TBP* gene. There are a number of other diseases in which chorea is a consistent and predominant feature, however, and these have never been unified under a single naming system such as the DYTs, PARKs or SCAs. As a result, the proposed list for choreas is an expanded one (Table 5). Because not all genetically determined choreas have a phenotype akin to Huntington's disease, we propose a new prefix, CHOR.

Chorea can unusually be the predominant feature of several autosomal recessively inherited ataxias, in particular ataxia telangiectasia, ataxia with oculomotor apraxia types 1 and 2 and Friedreich's ataxia. As such, these ataxic disorders merit crossreferencing to the chorea list. However, given that we have not yet taken on the nomenclature of autosomal recessively inherited ataxias we have not included them yet. The list will be amended as we complete that work.

Chorea can be a feature in some SCAs (e.g. SCA1, 2, or 7) and is also part of the phenotypic spectrum in cases with intracranial basal ganglia calcifications, neurodegeneration with brain iron accumulation (NBIA), pontocerebellar hypoplasia (PCH2), and several dystonias (e.g. DYT-TAF1). However, chorea is not a prominent

finding in these disorders therefore they are not included in the list of genetically determined choreas. Chorea is often a prominent manifestation of paroxysmal movement disorders but we have chosen to place these disorders on a separate list because the paroxysmal nature of the movement disorder was felt to be a more distinctive feature.

New designation	Clinical clues	Inheri-	Locus
		tance	symbol
CHOR-HTT	Huntington's disease (HD): Chorea and dementia, young onset may have predominant parkinsonism (Westphal variant)	AD	None
CHOR-PRNP	HD-like phenotype, seizures (variable)	AD	HDL1
CHOR-JPH3	HD-like phenotype To date only found in patients of African descent	AD	HDL2
CHOR-NKX2-1	Phenotypes 1. Brain–lung– thyroid syndrome (50%):	AD	None

Table 5: The proposed new list of hereditary choreas

	infantile onset global		
	developmental delay,		
	childhood onset chorea-		
	athetosis, hypothyroidism		
	and pulmonary dysfunction		
	2. Brain and thyroid disease		
	(30%): infantile onset global		
	developmental delay		
	childhood onset chorea-		
	athetosis, hypothyroidism		
	3. Isolated benign hereditary		
	chorea (13%) ³²		
CHOR-VPS13A	Chorea-Acanthocytosis; 33	AR	none
	Feeding dystonia, tics,		
	parkinsonism, seizures,		
	cognitive and behavioral		
	symptoms, neuropathy		
	Laboratory: Acanthocytosis		
	elevated creatine kinase and		
	liver enzymes		
	iver enzymes		
CHOR-XK	McLeod syndrome;	X-linked	none
	Seizures, cognitive and	recessive	
	behavioral symptoms,		

	neuromuscular involvement,		
	cardiomyopathy;		
	Laboratory: Acanthocytosis,		
	Kell antigen, elevated CK,		
	liver enzymes		
Combined phenoty	vpes: where chorea coexists v	vith (an)othe	
movement disorde	r(s) as a prominent and consi	stent feature	
DYT/CHOR-HPRT	Lesch-Nyhan Syndrome	X-linked	none
		recessive	none
		166633176	
	developmental delay,		
	choreoathetosis,		
	dystonia, self-injuries		
	behaviour		
DYT/CHOR-T2	Mitochondrial acetoacetyl-CoA thiolase deficiency metabolic decompensation and basal ganglia injury during acute stress resulting in dystonia and chorea ¹⁵	AR	none
DYT/CHOR-GCDH	Glutaric aciduria type I, macrocephaly, metabolic decompensation and basal ganglia injury during acute stress resulting in dystonia and chorea ¹⁶	AR	None

Hereditary spastic paraplegia

Hereditary spastic paraplegia (HSP) is a group of inherited disorders characterized by "spasticity" or progressive stiffness of the limbs (usually the lower limbs more than upper limbs) associated with hyper-reflexia and gait difficulties. Symptoms may begin in early childhood through to late adulthood. Affected patients may develop signs of spasticity only and are referred to as "pure" forms of HSP, whereas other patients may have associated features such as muscle weakness or atrophy, ptosis and ophthalmoplegia, thin corpus callosum, ataxia or cognitive impairment and are referred to as "complicated" or "complex" forms of HSP. A common complex phenotype includes amyotrophy of the hands and has been called Silver syndrome. Only three HSP genes have been reported to present with *only* pure HSP. Distinguishing features in specific monogenic forms of HSP (eg thinning of the corpus callosum in SPG11 and SPG15 or external ophthalmoplegia in SPG7) can provide clinical clues to the precise genetic diagnosis, however variability of phenotypic expression even within specific genetic forms of makes genetic counseling challenging.

A total of 73 genes and loci have been reported to cause HSP and assigned an "SPG" (spastic paraplegia) designation to date (Supplementary Table 6).^{34, 35} Thirtytwo HSP causing genes have been found in only single families and remain unconfirmed

(SPG5B,14,16,19,24,25,27,29,32,34,36,37,38,40,41,42,44,52,53,56,59,60,61,63,64, 66,67,68,69,70,71,72). For seventeen, no gene has been unequivocally identified. Two SPG designations refer to the same gene (SPG 45 and SPG65). Thus, according to the revised system, there are only 40 confirmed monogenic forms of hereditary spastic paraplegia. Three are transmitted following an X-linked recessive trait, 27 are AR and 10 are AD. Given that most patients with HSP have common clinical features of spasticity, and most have additional features, the spastic paraplegias are most easily classified according to mode of inheritance. We recommend the prefix HSP (and not SPG) to recognize the role of inheritance in this group of disorders. A revised classification system is outlined in Table 6.

Table 6: The proposed new list of hereditary spastic paraplegias

New	Clinical clues	Inheri-	Old Locus
designation		tance	Symbol
and			
Inheritance			
subaroup			
Autosomal dom	inant forms	L	<u> </u>
HSP-ATL1	Pure or complex; Silver-	AD/AR	SPG3A
	syndrome, allelic with		
	boroditary concorv		
	neuropathy type 1, cerebral		
	palsy (infantile onset).		
HSP-SPAST	Pure or complex; dementia,	AD	SPG4
	epilepsy, Peripheral		
	neuropathy, tremor, ataxia,		
	TCC cerebellar atrophy		
HSP-NIPA1	Pure or complex; Peripheral	AD	SPG6
	neuropathy, spinal cord		
	atrophy, spastic dysarthria,		

45

	facial dystonia, atrophy of the		
	small hand muscles, upper		
	limb spasticity, epilepsy.		
HSP-KIAA0196	Pure spastic paraplegia	AD	SPG8
HSP-KIF5A	Pure or complex; allelic to	AD	SPG10
	Charcot Marie Tooth		
	Neuropathy Type 2, Silver-		
	syndrome, mental		
	retardation, parkinsonism,		
	deafness, retinitis,		
	dysautonomia, sensory spinal		
	cord-like syndrome.		
HSP-RTN2	Pure spastic paraplegia	AD	SPG12
HSP-HSPD1	Pure or complex; dystonia.	AD	SPG13
HSP-BSCL2	Complex; Silver syndrome,	AD	SPG17
	these mutations may also		
	cause distal hereditary		
	neuropathy type 5.		
HSP-REEP1	Pure or complex; distal motor	AD	SPG31
	neuronopathy, axonal		
	Peripheral neuropathy, Silver-		
	like syndrome, cerebellar		

	ataxia, tremor, dementia.		
HSP-ZFYV327	Pure spastic paraplegia	AD	SPG33
Autosomal Rece	essive forms		
HSP-CYP7B1	Pure or complex; white matter	AR	SPG5A
	lesions, optic atrophy,		
	cerebellar ataxia, sensory		
	ataxia.		
HSP-SPG7	Pure or complex; optic atrophy,	AR/AD*	SPG7
	cerebellar atrophy, dysarthria,		
	dysphagia, TCC, CPEO-like		
	phenotype, mitochondrial		
	abnormalities on muscle		
	biopsy.		
HSP-KIAA1840	Pure or complex; May cause	AR	SPG11
	Kjellin syndrome; TCC, mental		
	retardation, sensory		
	neuropathy, amyotrophy,		
	dysarthria, nystagmus, ataxia,		
	parkinsonism, maculopathy,		
	white matter lesions.		
	Occasional parkinsonism.		
HSP-ZFYVE26	Complex; Kjellin syndrome.	AR	SPG15
	TCC, WMLs, mental		

	retardation, dysarthria,		
	pigmentary maculopathy,		
	peripheral neuropathy, distal		
	amyotrophy. Occasional		
	parkinsonism		
HSP-ERLIN2	Complex; intellectual decline,	AR	SPG18
	speech involvement, seizures,		
	congenital hip dislocation.		
HSP-SPARTIN	Complex; Troyer-syndrome.	AR	SPG20
	Early onset dysarthria, distal		
	muscle wasting with		
	contractures and cerebellar		
	signs in some. Delayed		
	cognition and dysmorphism.		
HSP-ACP33	Pure or complex; Mast	AR	SPG21
	syndrome, Dementia,		
	cerebellar involvement,		
	dyskinesias, athetoid		
	movements, TCC, white matter		
	lesions.		
HSP-B4GALNT	Complex; progressive	AR	SPG26
	dysarthria, distal amyotrophy,		
	non-progressive cognitive		
	impairment, cerebellar signs,		

	sensory polyneuropathy, pes		
	cavus, stereotypies, emotional		
	lability, psychiatric illness,		
	seizures.		
HSP-DDHD1	Pure and complex; cerebellar	AR	SPG28
	oculomotor disturbance,		
	Peripheral neuropathy.		
HSP-KIF1A	Pure or complex; cerebellar	AR	SPG30
	signs, PNP, allelic to hereditary		
	sensory and autonomic		
	neuropathy.		
	-		
HSP/NBIA-	Pure or complex; cognitive	AR	SPG35
FA2H	decline, dysarthria, seizures,		
(FAHN)	ataxia, dystonia, white matter		
	lesions.		
	Iron accumulation on imaging:		
	GP (more subtle than other		
	NBIAs)		
HSP-	Complex; axonal peripheral	AR	SPG39
PNPLA6/NT	neuropathy, spinal cord		
	atrophy, learning disability,		
	anaach impoirmant, aarahallar		
	speech impairment, cerebellar		

	Neuhäuser and Gordon		
	Holmes syndromes.		
HSP/NBIA-	Mitochondrial membrane	AR	SPG43
C19orf12	protein-associated		
	neurodegeneration (MPAN)		
	Complex; Silver-syndrome.		
	Iron accumulation: GP –		
	hyperintense streaking of		
	medial medullary lamina		
	between GPi and GPe; SN.		
HSP-NT5C2	Complex; mental retardation,	AR	SPG45
	ocular signs		
HSP-GBA2	Complex; mental impairment,	AR	SPG46
	cataract, hypogonadism in		
	males, TCC and cerebellar		
	atrophy on brain imaging.36		
HSP-AP4B	Complex: intellectual disability	AR	SPG47
	seizures TCC, white matter		
HSP-KIAA0415	Pure or complex; cervical cord	AR	SPG48
HSP-KIAA0415	Pure or complex; cervical cord hyperintensities.	AR	SPG48

HSP-TECPR2	Complex; severe intellectual disability, fluctuating central hypoventilation, gastresophageal reflux disease, awake apnea, areflexia, dysmorphic features.	AR	SPG49
HSP-APAM1	Complex; cerebral palsy, intellectual disability, reduction of cerebral white matter and atrophy of the cerebellum.	AR	SPG50
HSP-AP4E1	Complex; cerebral palsy, intellectual disability and microcephaly.	AR	SPG51
HSP-DDHD2	Complex; mental retardation, dysmorphism, short stature and dysgenesis of the corpus callosum. ³⁷	AR	SPG54
HSP-C12orf65	Complex; optic atrophy, peripheral neuropathy.	AR	SPG55
HSP-KIF1C. Allelic with autosomal recessive	Pure and complicated, chorea, myoclonus, dysarthria, developmental delay, mild mental retardation, hypodontia,	AR	SPG58

the SAX2 locus.sensorineural deafness, pes planus, white matter lesions.Image: SPG62HSP-ERLIN1Pure and complex; thoracic kyphosis, borderline intelligence.ARSPG62HSP-NT5C2Complex; learning disability, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.ARSPG65HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-ALDH3A2RM, ichtyosis, macular dystrophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARSjögren- Larsson syndromeHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1	spastic ataxia at	ptosis, short stature,		
planus, white matter lesions.ARSPG62HSP-ERLIN1Pure and complex; thoracic kyphosis, borderline intelligence.ARSPG62HSP-NT5C2Complex; learning disability, optic atrophy, squint, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.ARSPG65HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxiaARSACSHSP-ALDH3A2RM, ichtyosis, macular dystrophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARLarsson syndromeHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1 hydrocephalus, TCC.	the SAX2 locus.	sensorineural deafness, pes		
HSP-ERLIN1Pure and complex; thoracic kyphosis, borderline intelligence.ARSPG62HSP-NT5C2Complex; learning disability, optic atrophy, squint, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.ARSPG65HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxiaARSACSHSP-ALDH3A2RM, ichtyosis, macular dystorphy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARIHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		planus, white matter lesions.		
kyphosis, borderline intelligence.Image: SPG65HSP-NT5C2Complex; learning disability, optic atrophy, squint, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.ARSPG65HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxiaARSACSHSP-ALDH3A2RM, ichtyosis, macular dystorphy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARImage: Syndrome SyndromeHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2	HSP-ERLIN1	Pure and complex; thoracic	AR	SPG62
Intelligence.Intelligence.Intelligence.HSP-NT5C2Complex; learning disability, optic atrophy, squint, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.ARSPG65HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxia dystophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARSjögren- Larsson syndromeHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		kyphosis, borderline		
HSP-NT5C2Complex; learning disability, optic atrophy, squint, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.ARSPG65HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxia dystrophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARLarsson syndromeHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		intelligence.		
optic atrophy, squint, glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.Image: Complex generalized dystonia, no speechARAlsinHSP-ALSINComplex, generalized dystonia, no speechARSACSHSP-ALDH3A2RM, ichtyosis, macular dystrophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARSPG1HSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG2	HSP-NT5C2	Complex; learning disability,	AR	SPG65
glaucoma, congenital cataract, TCC, white matter lesions, cystic occipital leukomalacia.Image: Second		optic atrophy, squint,		
TCC, white matter lesions, cystic occipital leukomalacia.Image: Second		glaucoma, congenital cataract,		
cystic occipital leukomalacia.AlsinHSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxiaARSACSHSP-ALDH3A2RM, ichtyosis, macular dystrophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARImage: Complex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		TCC, white matter lesions,		
HSP-ALSINComplex, generalized dystonia, no speechARAlsinHSP-SACSINSpastic ataxiaARSACSHSP- ALDH3A2RM, ichtyosis, macular dystrophy, leukoencephalopathyARSjögren- Larsson syndromeHSP-BICD2SMA likeARImage: Complex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		cystic occipital leukomalacia.		
dystonia, no speechIIHSP-SACSINSpastic ataxiaARSACSHSP-ALDH3A2RM, ichtyosis, macularARSjögren- Larsson ieukoencephalopathyLarssonHSP-BICD2SMA likeARIV-linked recessiveVIIHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2	HSP-ALSIN	Complex, generalized	AR	Alsin
HSP-SACSINSpastic ataxiaARSACSHSP-ALDH3A2RM, ichtyosis, macularARSjögren- Larsson syndromedystrophy,LarssonsyndromeleukoencephalopathyARSyndromeHSP-BICD2SMA likeARImage: Complex; MASA-syndrome, hydrocephalus, TCC.HSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		dystonia, no speech		
HSP-ALDH3A2RM, ichtyosis, macularARSjögren- Larsson syndromedystrophy,leukoencephalopathysyndromeHSP-BICD2SMA likeARI X-linked recessive SMA likeSPG1HSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2	HSP-SACSIN	Spastic ataxia	AR	SACS
dystrophy,LarssonleukoencephalopathysyndromeHSP-BICD2SMA likeARX-linked recessiveHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRHSP-PLP1Pure or complex; opticXR	HSP-ALDH3A2	RM, ichtyosis, macular	AR	Sjögren-
leukoencephalopathysyndromeHSP-BICD2SMA likeARX-linked recessiveImage: SMA likeImage: SMA likeHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2		dystrophy,		Larsson
HSP-BICD2SMA likeARX-linked recessiveHSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.HSP-PLP1Pure or complex; opticXRSPG2		leukoencephalopathy		syndrome
X-linked recessive HSP-L1CAM Complex; MASA-syndrome, hydrocephalus, TCC. HSP-PLP1 Pure or complex; optic XR SPG1	HSP-BICD2	SMA like	AR	
HSP-L1CAMComplex; MASA-syndrome, hydrocephalus, TCC.XRSPG1HSP-PLP1Pure or complex; opticXRSPG2	X-linked recessi	ve		
hydrocephalus, TCC.HSP-PLP1Pure or complex; opticXRSPG2	HSP-L1CAM	Complex; MASA-syndrome.	XR	SPG1
HSP-PLP1 Pure or complex; optic XR SPG2		hydrocephalus, TCC.		
	HSP-PLP1	Pure or complex; optic	XR	SPG2

Allelic with	atrophy, ataxia, nystagmus,		
Pelizaeus-	peripheral neuropathy,		
Merzbacher	aphasia, mental retardation.		
disease.			
HSP-SLC16A2	Complex; Allan-Herndon-	XR	SPG22
	Dudley syndrome		

TCC=thinning of the corpus callosum, SACS=Spastic Ataxia of Charlevoix-

Saguenay, SMA=Spinal Muscular Atrophy

Silver syndrome: Complex HSP involving amyotrophy of the hand muscles

Kjellin syndrome: Complex HSP including thinning of the corpus callosum and central retinal degeneration

* Note that some studies have suggested that some SPG7 mutations may have an autosomal dominant effect, particularly autosomal dominant optic atrophy.

Primary Familial Brain Calcification

Primary familial brain calcification (PFBC) refers to genetically determined calcification of various brain structures, notably but not exclusively the basal ganglia, in the absence of a known metabolic, toxic, infectious or traumatic etiology. This condition can be associated with various neurological symptoms, but frequently movement disorders, including parkinsonism, dystonia, chorea, ataxia and tremor. Other neurological and psychiatric symptoms and signs are also common. Locus symbols for this condition use the acronym IBGC (Idiopathic Basal Ganglia calcification) and IBGC1 through 4 have been assigned, but only one has a known

and independently confirmed gene, SLC20A2 (Supplementary Table 7).^{38, 39} PFBC is a term that recognizes that the calcification can often extend well beyond the basal ganglia to involve the dentate nucleus, cerebellar gyri, brain stem, centrum semiovale, and subcortical white matter, and recognizes the genetic etiology of the familial forms. Thus, we propose the prefix PFBC, consistent with the nomenclature recently used by others.⁴⁰ No distinguishing phenotypic features of PFBC-SLC20A2 compared with the SLC20A2 mutation negative patients with familial brain calcification have yet been identified.³⁸ Table 7 shows the proposed new list of genetically determined primary familial brain calcification disorders. In this list we have not included the disorder of progressive encephalopathy and spastic tetraplegia due to mutations in the TREX1 gene despite the fact that it is associated with brain calcification.⁴¹ This is because it does not primarily present with a movement disorder.

New designation	Clinical clues	Inheri- tance	Locus symbol
PFBC-SLC20A2	Various movement disorders, cognitive dysfunction	AD	IBGC3, IBGC1
PFBC-PDGFRB	Various movement disorders, cognitive dysfunction	AD	IBGC4
PFBC-PDGFB	Various movement disorders, cognitive dysfunction	AD	IBGC5

Table 7: The proposed new list of primary familial brain calcification

Neurodegeneration with brain iron accumulation

Neurodegeneration with brain iron accumulation (NBIA) characterizes a number of progressive neurological disorders with the hallmark of iron deposition on magnetic resonance imaging (MRI) in several brain regions, most consistently the globus pallidus.⁴² Most of these are genetically determined although some patients, particularly with neurological symptoms beginning in mid-to-late adult life, have sporadic disorders of uncertain origin. Movement disorders, particularly dystonia and parkinsonism, dominate the clinical manifestations, but other common features include spasticity, ataxia, cognitive and psychiatric disturbances, as well as oculomotor abnormalities, optic nerve, retinal and peripheral nerve involvement.

To date NBIA as a locus symbol (i.e. numerical designation) has only been applied to five disorders. However, up to nine distinct genetic disorders have been included under the NBIA umbrella term. Other disorders in this group have either retained the original disease name (e.g., aceruloplasminenemia, neuroferritinopathy) or, for more recently described disorders, been labelled with an acronym combining the name of the causative protein with "<u>A</u>ssociated <u>N</u>eurodegeneration" (i.e., PKAN for pantothenate kinase associated neurodegeneration). In Supplementary Table 8 we have provided a listing of all disorders that have been included under the umbrella NBIA classification.⁴³ Table 8 provides a new designation for each of these. Those that present consistently with one or more specific movement disorder phenotypes have been assigned a combined prefix (e.g. NBIA/DYT) and are included in the list specific to that movement disorder.

55

Table 8: The proposed new list of Neurodegeneration with Brain Iron Accumulation

Clinical clues	Inheritanc	Locus
	e pattern	symbol
Pantothenate kinase associated	AR	NBIA1
neurodegeneration (PKAN)		
Iron accumulation: GP - Eye of the tiger,		
Phenotype: Dystonia, spasticity,		
parkinsonism, chorea, psychiatric cognitive		
decline, gaze palsy, pigmentary retinopathy		
PLA2G6-associated neurodegeneration	AR	NBIA2,
(PLAN)		PARK14
Iron accumulation: GP, SN in some; adults may have striatal involvement; ½ INAD and majority of adult-onset lack imaging BIA on MRI. Infantile phenotype: Developmental delay, hypotonia, ataxia, pyramidal signs, optic atrophy, sensorimotor axonal neuropathy seizures		
seizures.		
	Clinical clues Pantothenate kinase associated neurodegeneration (PKAN) Iron accumulation: GP - Eye of the tiger, Phenotype: Dystonia, spasticity, parkinsonism, chorea, psychiatric cognitive decline, gaze palsy, pigmentary retinopathy <i>PLA2G6</i> -associated neurodegeneration (PLAN) Iron accumulation: GP, SN in some; adults may have striatal involvement; ½ INAD and majority of adult-onset lack imaging BIA on MRI. Infantile phenotype: Developmental delay, hypotonia, ataxia, pyramidal signs, optic atrophy, sensorimotor axonal neuropathy seizures.	Clinical cluesInheritanc e patternPantothenate kinase associated neurodegeneration (PKAN)ARIron accumulation: GP - Eye of the tiger, Phenotype: Dystonia, spasticity, parkinsonism, chorea, psychiatric cognitive decline, gaze palsy, pigmentary retinopathyARPLA2G6-associated neurodegeneration (PLAN)ARIron accumulation: GP, SN in some; adults may have striatal involvement; ½ INAD and majority of adult-onset lack imaging BIA on MRI.Infantile phenotype: Developmental delay, hypotonia, ataxia, pyramidal signs, optic atrophy, sensorimotor axonal neuropathy seizures.

	Adult phenotype: Dystonia-parkinsonism,		
	pyramidal signs, cognitive, psychiatric		
	features		
NBIA-CP	Aceruloplasminemia	AR	
	Iron accumulation: More homogeneous		
	involvement of GP, caudate, putamen,		
	thalamus, red nucleus, dentate		
	Phenotype: Cognitive impairment cranial		
	dyskinesia (inci biepharospasm), ataxia,		
	chorea, retinal degeneration, diabetes, liver		
	disease.		
NBIA-FTI	Neuroferritinopathy	AD	NBIA3
	Realizionanoparty	110	
	Iron accumulation: GP, caudate, putamen,		
	SN, red nucleus. Cystic BG changes –		
	pallidal necrosis.		
	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial		
	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia,		
	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia, cognitive and psychiatric dysfunction.		
	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia, cognitive and psychiatric dysfunction.		
NBIA-	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia, cognitive and psychiatric dysfunction. Beta-propeller protein associated	X-linked	NBIA5
NBIA- WDR45	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia, cognitive and psychiatric dysfunction. Beta-propeller protein associated neurodegeneration (BPAN – previously	X-linked dominant	NBIA5
NBIA- WDR45	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia, cognitive and psychiatric dysfunction. Beta-propeller protein associated neurodegeneration (BPAN – previously SENDA*)	X-linked dominant	NBIA5
NBIA- WDR45	pallidal necrosis. Phenotype: Chorea, stereotypies, cranial dyskinesia/dystonia, parkinsonism, ataxia, cognitive and psychiatric dysfunction. Beta-propeller protein associated neurodegeneration (BPAN – previously SENDA*) Iron accumulation: GP, SN (more than GP).	X-linked dominant	NBIA5

	Phenotype: Global developmental delay in		
	childhood, seizures, spasticity, Rett-like		
	features, disordered sleep; early adulthood		
	progressive dystonia, parkinsonism		
	seizures, dementia		
NBIA-	Woodhouse-Sakati syndrome	AR	
DCAF17	Iron accumulation: GP, SN, other BG		
	(variable evidence for BIA).		
	Phenotype: Generalized and focal dystonia,		
	dysarthria, deafness, seizures, cognitive		
	decline.		
	Hypogonadism, alopecia, diabetes mellitus,		
	thyroid dysfunction, keratoconus,		
	camptodactyly, acanthosis nigrans		
	Co A cymthese protein conscioted		
NBIA-	Coa synthase protein associated	AK	
COASY	neurodegeneration (CoPAN) 2 patients to		
	date ⁴⁴		
	Iron accumulation: GP with central		
	hyperintensity (calcification on CT), SN; early		
	swelling and hyperintensity in caudate,		
	putamen and thalamus (1 patient)		

	Phenotype: Dystonia, spasticity, cognitive		
	impairment bradykinesia rigidity motor		
	benavior, tics.		
Members of	other lists that have brain iron accumulati	on as a cons	istont
fa a turna			isterit
feature			
HSP/NBIA-	Fatty acid hydroxylase associated	AR	SPG35
FA2H	neurodegeneration (FAHN)		
	Iron conjumulations CD (more subtle then		
(FAHN)	fron accumulation: GP (more subtle than		
	other NBIAs)		
	Phenotype: Pure or complex; cognitive		
	decline, dysarthria, seizures, ataxia,		
	dystonia, white matter lesions.		
HSP/NBIA-	Mitochondrial membrane protein	AR	NBIA4,
C19orf12	associated neurodegeneration (MPAN)		SPG43
(MPAN)	Iron accumulation: GP – hyperintense		
	streaking of medial medullary lamina		
	between GPi and GPe; SN.		
	Phenotype: Spasticity, dystonia,		
	parkinsonism, cognitive decline, psychiatric		

	abn, optic atrophy, motor axonopathy		
Members of other lists that occasionally have brain iron accumulation on			
imaging as a feature			
PARK-	Kufor Rakeb syndrome: Juvenile or early	AR	PARK9
ATP13A2	onset parkinsonism, vertical gaze palsy,		
	minifacial-faucial myoclonus, pyramidal signs		

BIA = Brain iron accumulation, GP – globus pallidus, GPi = GP internal segment, GPe = GP external segment, SN = substantia nigra, BG = basal ganglia, INAD = Infantile neuroaxonal dystrophy; VSNGP = vertical supranuclear gaze palsy, Bx = biopsy, ERG = electroretinogram

*SENDA: static encephalopathy of childhood with neurodegeneration in adulthood

Discussion

Challenges:

We present a new system of nomenclature for genetically determined movement disorders that attempts to address many of the problems that have developed with the previous system. In doing so we have tried to develop a system that is logical, consistent, flexible to change and comprehensive. In our desire to be comprehensive we have included a number of childhood onset metabolic disorders that have heretofore been left out of the locus symbol naming system. Including them will hopefully serve to increase awareness on the part of clinicians in adult medicine of disorders that can affect adults that transition from pediatric care and even occasionally present in young adulthood. We realize, however, several challenges. First, it is impossible for us to be truly comprehensive by including all genetically determined disorders that can, unusually, at some point in the course, manifest predominantly as a movement disorder. However, we have tried to include all of those disorders that have a movement disorder as a consistent and predominant feature. At the same time, in circumstances where mutations in a specific gene can cause more than one distinct phenotype and where one of those phenotypes is a frequent cause of a particular movement disorder (e.g. SLC2A1 mutations causing infantile developmental delay and epilepsy OR paroxysmal exertion-induced dystonia) we have chosen to retain it in the lists. This system is bound to be associated with some 'misclassification' however, since for many disorders there is insufficient knowledge on the frequency of movement disorders compared with other phenotypes to render a decision on this basis. Second, we are conscious of the fact that knowledge of the phenotypic spectrum of these disorders will continuously evolve, and it will be necessary to change designations over time. By avoiding a sequential nomenclature (e.g. numbers) we hope that this will be an easier process than it has been in the past. The need to incorporate new knowledge also implies that individuals will need to be dedicated to maintaining the lists indefinitely - we anticipate that this task will fall to the MDS's Genetic Nomenclature Task Force. Third, we are also conscious of the fact that many of the disorders listed in these tables have well known names that will continue to be used, no matter how logical our new system may be. It is not our intent, for example, to advocate that Wilson disease hereafter be referred to as DYT-ATP7B. However, the new symbol will serve to link the ATP7B gene to the phenotype of dystonia; cross-referencing to

other lists will acknowledge the combined movement disorders that are often a part of this disorder and placing DYT-ATP7B on these lists will provide a more complete genetic differential diagnosis to clinicians faced with a particular phenotype than has been available in the past. Fourth, by attempting to avoid erroneous assignment of causative mutations we have raised the challenge of establishing criteria that will minimize false positive associations. One has to be very cautious about the nature of variants found in a given gene, since except for recurrent mutations or repeat expansions, the pathogenicity of a new missense variant is usually difficult to establish. There are currently no error-proof criteria for establishing pathogenicity and the system will have to be monitored for erroneous entries as new data becomes available.

Next steps

Our work is not yet complete - it remains to compile lists for the recessively inherited and congenital ataxias and for genetic causes of myoclonus. This will be taken on as a next project of the task force, involving additional experts. In addition, it would be useful to incorporate into the classification the underlying type of mutation to inform genetic counseling issues such as instability during transmission (repeat expansion disorders), heterozygous risk assessment (for example in mutations of SPG7 or Parkin) and reduced penetrance (all dominant forms of inherited movements disorders) or imprinting (for example in DYT-SGCE).

As mentioned above, a formal mechanism for incorporating new knowledge into the naming system needs to be established and should include input from both clinicians

and geneticists. The next task of the Task Force will be to establish these mechanisms.

In the process of developing these lists it became clear that there is no standard for the field as to what we consider disease-causing vs risk-conferring. This is important because one of the underlying principles of our naming system has been to restrict the lists to genes that are disease-causing and not include genetic risk factors. Such a standard would be helpful for communication and should be a task taken on by an expert panel. Once accepted definitions are in place, there may be changes to our lists.

Finally, this system can be easily applied to other neurological disorders and we would encourage leaders in other medical fields to consider adopting a similar system and avoid many of the problems that have beset the field of genetics in movement disorders.

Acknowledgements:

CK is a recipient of a career development award from the Hermann and Lilly Schilling Foundation.

CM is a recipient of a New Investigator Award from the Canadian Institutes of Health Research.

CMS is a recipient of the National Health and Medical Research Council Clinical Practitioner Fellowship (#1008433)

References

 Kramer PL, de Leon D, Ozelius L, et al. Dystonia gene in Ashkenazi Jewish population is located on chromosome 9q32-34. Annals of Neurology 1990;27:114-120.

 Marras C, Lohmann K, Lang A, Klein C. Fixing the broken system of genetic locus symbols: Parkinson disease and dystonia as examples. Neurology 2012;78:1016-1024.

3. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469-476.

4. Bonifati V. Genetics of Parkinson's disease--state of the art, 2013.

Parkinsonism & Related Disorders 2014;20 Suppl 1:S23-28.

5. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol 2013;9:445-454.

 Alcalay RN, Dinur T, Quinn T, et al. Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurol 2014;71:752-757.

 Opladen T, Hoffmann G, Horster F, et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 2011;26:157-161.

8. Furukawa Y, Kish S. Tyrosine Hydroxylase Deficiency. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. Gene Reviews: University of Washingon, 2014.

9. Friedman J, Roze E, Abdenur JE, et al. Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Annals of Neurology 2012;71:520-530.

10. Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. Journal of Inherited Metabolic Disease 2012;35:963-973.

11. Sedel F, Saudubray JM, Roze E, Agid Y, Vidailhet M. Movement disorders and inborn errors of metabolism in adults: a diagnostic approach. Journal of Inherited Metabolic Disease 2008;31:308-318.

12. Tuschl K, Clayton PT, Gospe SM, Mills PB. Dystonia/Parkinsonism, Hypermanganesemia, Polycythemia, and Chronic Liver Disease. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle (WA): University of Washington, 2012.

Klein C. Genetics in dystonia. Parkinsonism & Related Disorders 2014;20
 Suppl 1:S137-142.

14. Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28:863-873.

 Mitchell GA FT. Inborn errors of ketone body metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001: 2327–2356.

16. Kolker S, Christensen E, Leonard JV, et al. Diagnosis and management of glutaric aciduria type I--revised recommendations. Journal of Inherited Metabolic Disease 2011;34:677-694.

17. Ng J, Zhen J, Meyer E, et al. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 2014;137:1107-1119.

Tabarki B, Al-Hashem A, Alfadhel M. Biotin-Thiamine-Responsive Basal
 Ganglia Disease. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews.
 Seattle (WA): University of Washington, 2013.

 Ha AD, Parratt KL, Rendtorff ND, et al. The phenotypic spectrum of dystonia in Mohr-Tranebjaerg syndrome. Mov Disord 2012;27:1034-1040.

20. Kim IS, Ki CS, Park KJ. Pediatric-onset dystonia associated with bilateral striatal necrosis and G14459A mutation in a Korean family: a case report. J Korean Med Sci 2010;25:180-184.

21. Gardiner AR, Bhatia KP, Stamelou M, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 2012;79:2115-2121.

22. Bhatia KP. Paroxysmal dyskinesias. Mov Disord 2011;26:1157-1165.

23. Fernandez-Alvarez E, Perez-Duenas B. Paroxysmal movement disorders and episodic ataxias. Handb 2013;112:847-852.

24. Jen JC. Hereditary episodic ataxias. Annals of the New York Academy of Sciences 2008;1142:250-253.

Wang D, Pascual JM, De Vivo D. Glucose Transporter Type 1 Deficiency
 Syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle
 (WA): University of Washington, 2012.

26. Van Hove J, Coughlin C, Scharer G. Glycine Encephalopathy. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle (WA): University of Washington, 2013.

27. Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients.[Republished from Mol Genet Metab. 2012 Jan;105(1):34-43; PMID: 22079328]. Mol Genet Metab 2012;106:385-394.

28. Seow HF, Broer S, Broer A, et al. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nature Genetics 2004;36:1003-1007.

29. Verbeek DS, van de Warrenburg BP. The autosomal dominant cerebellar ataxias. Seminars in Neurology 2011;31:461-469.

30. Van Gaalen J, Giunti P, van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Disord 2011;26:792-800.

31. Schneider SA, Walker RH, Bhatia KP. The Huntington's disease-like syndromes: what to consider in patients with a negative Huntington's disease gene test. Nat Clin Pract Neurol 2007;3:517-525.

32. Carre A, Szinnai G, Castanet M, et al. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Human Molecular Genetics 2009;18:2266-2276.

Baeza AV, Dobson-Stone C, Rampoldi L, et al. Chorea-Acanthocytosis. In:
 Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. Seattle (WA):
 University of Washington, 2014.

34. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol (Berl) 2013;126:307-328.

Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia:
 clinical features and pathogenetic mechanisms. Lancet Neurology 2008;7:1127 1138.

Martin E, Schule R, Smets K, et al. Loss of function of glucocerebrosidase
 GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia.
 American Journal of Human Genetics 2013;92:238-244.

Gonzalez M, Nampoothiri S, Kornblum C, et al. Mutations in phospholipase
 DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur J
 Hum Genet 2013;21:1214-1218.

38. Hsu SC, Sears RL, Lemos RR, et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 2013;14:11-22.

 Wang C, Li Y, Shi L, et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nature Genetics 2012;44:254-256.
 Sobrido MJ, Coppola G, Oliveira J, Hopfer S, Geschwind DH. Primary Familial Brain Calcification. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K, eds. GeneReviews. Seattle Washington: University of Washington, Seattle, 2013.
 Stephenson JB. Aicardi-Goutieres syndrome (AGS). Europ J Paediatr Neurol 2008;12:355-358.

42. Doorn JM, Kruer MC. Newly characterized forms of neurodegeneration with brain iron accumulation. Current Neurology & Neuroscience Reports 2013;13:413.

43. Schneider SA, Hardy J, Bhatia KP. Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 2012;27:42-53.

44. Dusi S, Valletta L, Haack TB, et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. American Journal of Human Genetics 2014;94:11-22.