The Movement Disorder Society's

9th International Congress of Parkinson's Disease & Movement Disorders

Final Program

New Orleans
Louisiana, USA • March 5-8, 2005
There is a new light in CNS drug development: SCHWARZ PHARMA. With an established reputation for excellence in cardiology and urology, we are now extending our expertise to CNS diseases.

SCHWARZ PHARMA is working to create new solutions for the treatment of life-altering diseases such as Parkinson’s disease, Restless Legs Syndrome, neuropathic pain and epilepsy. You will hear more about these novel therapies as they come to light. Please visit our website: www.schwarzpharma-cns.com
Table of Contents

- Welcome ... 3
- Acknowledgements ... 4
- Organization .. 6
- MDS Committees and Task Forces ... 12
- International Congress Registration and Venue .. 14
- International Congress Information
 - Continuing Medical Education .. 15
 - Evaluations .. 16
- Opening Ceremony and Welcome Reception .. 17
- Press Room .. 17
- Program-at-a-Glance .. 18
- Scientific Sessions .. 22
- Faculty .. 38
- Committee and Task Force Meetings ... 43
- Exhibitor Information and Directory ... 47
- Floor Plans .. 54
- Map of New Orleans .. 59
- Poster Session 1 .. 62
- Poster Session 2 .. 68
- Poster Session 3 .. 74

The photographs of New Orleans featured in this program were provided by the New Orleans Metropolitan Convention and Visitor’s Bureau.
Bird of prey
or butterfly?

DaTSCAN™ (I^{111}I)

PREScribing INFORMATION. DaTSCAN™ i/o/lupane (I^{111}I)
Please refer to full national Summary of Product Characteristics (SPC) before prescribing. Indications and approvals may vary in different countries. Further information available upon request. PREsentation Viels containing 185 MBq or 370 MBq i/o/lupane (I^{111}I) at reference time. INDICATIONS Detecting loss of functional dopaminergic neuron terminals in the striatum of patients with clinically uncertain Parkinsonian Syndromes in order to help differentiate Essential Tremor from Parkinsonian Syndromes related to idiopathic Parkinson’s Disease (PD), Multiple System Atrophy (MSA), Progressive Supranuclear Palsy (PSP). DaTSCAN is unable to discriminate between PD, MSA and PSP. DOSAGE AND METHOD OF ADMINISTRATION DaTSCAN is a 5% (v/v) ethanolic solution for intravenous injection and should be used without dilution. Clinical efficiency has been demonstrated across the range of 111-185 MBq; do not use outside this range. Appropriate thyroid blocking treatment must be given prior to and post injection of DaTSCAN. SPECT imaging should take place 3-6 hours after injection of DaTSCAN. DaTSCAN is not recommended for use in children or adolescents. For use in patients referred by physicians experienced in the management of movement disorders. See SPC. CONTRAINDICATIONS Pregnancy and in patients with hypersensitivity to iodide or any of the excipients. WARNINGS AND PRECAUTIONS Radiopharmaceuticals should only be used by qualified personnel with appropriate government authorisation and should be prepared using aseptic and radiological precautions. DaTSCAN is not recommended in moderate to severe renal or hepatic impairment. INTERACTIONS Consider current medication. Medicines that bind to the dopamine transporter may interfere with diagnosis; these include amphetamine, benzatropine, bupropion, cocaine, mazindol, methyldopa, phentermine and serotonin. Drugs shown during clinical trials not to interfere with DaTSCAN imaging include amantadine, trihexyphenidyl, budipine, levodopa, metoprolol, primodone, propranolol and selegiline. Dopamine agonists and antagonists acting on the postsynaptic dopamine receptors are not expected to interfere with DaTSCAN imaging and can therefore be continued if desired. PREGNANCY AND LACTATION Contraindicated in pregnancy. Information should be sought about pregnancy from women of child bearing potential. A woman who has missed her period should be assumed to be pregnant. If administration to a breast feeding woman is necessary, substitute formula feeding for breast feeding. UNDESIRABLE EFFECTS No serious adverse effects have been reported. Common side effects include headache, vertigo and increased appetite and drowsiness. Exposure to ionising radiation is linked with cancer induction and a potential for hereditary defects and must be kept as low as reasonably achievable. Intense pain on injection has been reported uncommonly following administration into small veins. DOSIMETRY Effective dose from 185 MBq is 4.35 mSv. OVERDOSE Encourage frequent micturition and defecation. MARKETING AUTHORISATION HOLDER Amersham plc, Little Chalfont, Bucks, UK. CLASSIFICATION FOR SUPPLY Subject to medical prescription. MARKETING AUTHORISATION NUMBERS EU/1/00/135/001 and EU/1/00/135/002. DATE OF REVISION OF TEXT 11 October 2004.

Reference: 1. Catalau A and Tolosa E. Mov Disord 2004
Dear Colleagues,

Welcome to The Movement Disorder Society’s (MDS) 9th International Congress of Parkinson’s Disease and Movement Disorders.

We are pleased to convene this International Congress and encourage you to take every opportunity to participate in the Scientific Program which features world renowned speakers. In the next days, the latest research and perspectives regarding Movement Disorders will be presented and discussed in an open format, offering unique educational opportunities for participants.

The International Congress begins with a series of Kickoff Seminars and then continues with an array of Plenary, Parallel, Poster and Video Sessions, as well as Controversies and Skills Workshops. New to this year’s International Congress, the Parallel Sessions and Skills Workshops have been designed to meet the requested need for smaller, more focused sessions. As a result, they will be able to provide greater in-depth coverage of specific topics and allow for additional audience participation.

Please also plan to participate in the Opening Ceremony and Welcome Reception on Saturday evening. The Welcome Reception will celebrate the unique styles, tastes and culture of the city of New Orleans. As a city famous for its French Quarter, jazz music, lively entertainment, distinctive cultures, architecture and the only surviving historic streetcar system in the United States, New Orleans is an ideal setting for the International Congress.

This is our first International Congress to convene in our new annual format, and we are looking forward to the many new and exciting opportunities that this format will allow both this year and in the future.

Thank you for attending.

With best regards,

C. Warren Olanow, MD
President, The Movement Disorder Society, 2003-2004
Chair, Congress Scientific Program Committee

Andrew J. Lees, MD FRCP
President, The Movement Disorder Society, 2005-2006

Anthony E. Lang, MD FRCPC
Co-chair 2005, Congress Scientific Program Committee
Acknowledgements

The International Congress Oversight Committee of the 9th International Congress of Parkinson’s Disease and Movement Disorders wishes to acknowledge and thank the following companies for providing support in the form of educational grants:

Platinum Plus Level
- Boehringer Ingelheim

Platinum Level
- GlaxoSmithKline
- Novartis
- Orion Pharma
- Eisai
- Teva Pharmaceutical Industries Ltd.
- Teva

Gold Level
- Allergan
- Mylan
- BerTek
- Valeant Pharmaceuticals

Silver Level
- GE Healthcare
- Kyowa
- Medtronic

Bronze Level
- Cephalon
Coming together to bring new solutions to your patients.
Organization

The Movement Disorder Society (MDS) is an international, professional society of clinicians, scientists, and other healthcare professionals who are interested in Parkinson’s disease, related neurodegenerative and neurodevelopmental disorders, hyperkinetic Movement Disorders, and abnormalities in muscle tone and motor control. The spectrum of clinical disorders represented by the Society includes, but is not limited to:

- Ataxia
- Blepharospasm
- Dysphonia
- Dystonic disorders
- Gait disorders
- Huntington’s disease
- Myoclonus
- Parkinson’s disease
- Spasticity
- Tardive dyskinesia
- Tics and Tourette syndrome
- Tremor

The Movement Disorder Society (MDS) was founded in 1985 on the initiative of Professors Stanley Fahn and C. David Marsden, whose leadership and vision guided the expansion of clinical expertise and research in this field. The organization merged in 1988 with the International Medical Society for Motor Disturbances.

Purpose, Mission and Goals

Purpose
The object and mission of the Society shall be to advance the neurological sciences pertaining to Movement Disorders; to operate exclusively for scientific, scholarly and educational purposes; to encourage research; to provide forums, such as medical journals, scientific symposia and International Congresses, for sharing ideas and for advancing the related clinical and scientific disciplines; to encourage interest and participation in the activities of the Society among healthcare and allied professionals and scientists; and to collaborate with other related professional and lay organizations.

Mission and Goals:
To disseminate knowledge about Movement Disorders by:
- Providing educational programs for clinicians, scientists and the general public designed to advance scientific and clinical knowledge about Movement Disorders
- Sponsoring Congresses and symposia on Movement Disorders
- Collaborating with other international organizations and lay groups
- Publishing journals, videotapes and other collateral materials committed to high scientific standards and peer review

To promote research into causes, prevention and treatment of Movement Disorders by:
- Using the Society’s influence and resources to enhance support for research
- Facilitating the dissemination of information about research
- Encouraging the training of basic and clinical scientists in Movement Disorders and related disorders

To formulate and promote public policy that will favorably affect the care of patients with Movement Disorders by:
- Working with regulatory agencies to assist them in the approval process of safe and effective therapeutic interventions
- Informing the public (media) and patient support groups of new research and therapeutic advances
- Playing a proactive role in the development of policies that affect support of research and patient care
- Developing standards of training in the specialty

Be sure to attend the MDS Business Meeting.

Monday, March 7, 2005 ~ 7:30 a.m. to 8:30 a.m.

Location: Acadia Room, Third Floor, Marriott
Organization

Officers (2005-2006)

President
Andrew J. Lees, United Kingdom

President-Elect
Anthony E. Lang, Canada

Secretary
Philip D. Thompson, Australia

Secretary-Elect
Olivier Rascol, France

Treasurer
Daniel Tarsy, USA

Treasurer-Elect
Yoshikuni Mizuno, Japan

Past President
C. Warren Olanow, USA

International Executive Committee (2005-2006)

Paul Bedárd, Canada
Shu-Leong Ho, China
Karl D. Kieburtz, USA
Santiago Giménez-Roldán, Spain
Nir Giladi, Israel
Marcelo Merello, Argentina
John C. Rothwell, United Kingdom
Kapil D. Sethi, USA
Claudia M. Trenkwalder, Germany
Marie Vidailhet, France

International Congress Oversight Committee (2005-2006)

Chair: Werner Poewe, Austria
Mark Hallett, USA
Andrew J. Lees, United Kingdom
C. Warren Olanow, USA
Daniel Tarsy, USA

International Congress Oversight Committee (2003-2004)

Chair: Mark Hallett, USA
Wolfgang Oertel, Germany
C. Warren Olanow, USA
Werner Poewe, Austria
Eduardo Tolosa, Spain

Congress Scientific Program Committee (2004-2005)

Chair: C. Warren Olanow, USA
Co-Chair 2004: Anthony H.V. Schapira, United Kingdom
Co-Chair 2005: Anthony E. Lang, Canada
Alim L. Benabid, France
Alfredo Berardelli, Italy
Cynthia L. Comella, USA
Bruno Dubois, France
John A. Hardy, USA
Etienne C. Hirsch, France
Joseph Jankovic, USA
Yoshikuni Mizuno, Japan
José A. Obeso, Spain
Olivier Rascol, France
Peter Riederer, Germany
John C. Rothwell, United Kingdom

Past Presidents

2003-2004 C. Warren Olanow, USA
2001-2002 Werner Poewe, Austria
1999-2000 Mark Hallett, USA
1997-1998 Eduardo Tolosa, Spain
1995-1996 Joseph Jankovic, USA
1991-1994 C. David Marsden, United Kingdom
1988-1991 Stanley Fahn, USA

International Medical Society for Motor Disturbances

Past Presidents

1993-1994 C. Warren Olanow, USA
1991-1992 Bastian Conrad, Germany
1989-1990 Mark Hallett, USA
1987-1988 Mario Manfredi, Italy
1985-1986 C. David Marsden, United Kingdom

MDS International Secretariat

The Movement Disorder Society
555 East Wells Street, Suite 1100
Milwaukee, WI 53202-3823 USA
Tel: +1 414-276-2145
Fax: +1 414-276-3349
E-mail: congress@movementdisorders.org
Web site: www.movementdisorders.org
An adjunct therapy to levodopa/carbidopa for the treatment of the signs and symptoms of idiopathic Parkinson’s disease

KEEP THEM “ON” LONGER

TASMAR improves symptom control with more “ON” time

- Increases “ON” time 1.7–2.9 hours and decreases “OFF” time 1.6–3.2 hours per 16-hour waking day

- 71% to 91% improvement in symptom severity and “wearing-off” effect at 3 months

- Reduces levodopa daily dose by up to 29% due to a significant increase of levodopa bioavailability

Liver monitoring is essential for patients taking TASMAR.

USE OF TASMAR REQUIRES WRITTEN INFORMED CONSENT BY THE PATIENT (SEE PATIENT CONSENT SECTION IN THE COMPLETE PRODUCT INFORMATION).

WARNING: Due to the risk of potentially fatal, acute fulminant liver failure, TASMAR should ordinarily be used in patients with Parkinson’s disease on levodopa/carbidopa who have symptom fluctuations and are not responding satisfactorily to or who are not appropriate for other adjunctive therapies (see INDICATIONS and DOSAGE AND ADMINISTRATION).

TASMAR should not be initiated in patients with clinical evidence of liver disease or 2 SGPT/ALT or SGOT/AST values >ULN and should be discontinued if substantial clinical benefit is not seen within 3 weeks.

Patients with severe dyskinesia or dystonia should be treated with caution (see PRECAUTIONS: Rhabdomyolysis).

Frequent laboratory monitoring is essential (see PRECAUTIONS: Laboratory Tests for the recommended schedule). Liver monitoring may not prevent liver failure; however, early detection and immediate drug withdrawal are believed to enhance the likelihood for recovery. Patients should be advised to self-monitor for signs of liver disease. Discontinue TASMAR if hepatic enzymes exceed ULN or patient exhibits signs of liver failure.

©2004 Valeant Pharmaceuticals

TASMAR (tolcapone) tablets (≥200mg)
Lengthening “ON” time

Valeant Pharmaceuticals International

©2004 Valeant Pharmaceuticals T030-1104
WARNING: Because of the risk of potentially fatal, acute fulminating liver failure, TASMIR (tocolpine) should be used with caution in patients with Parkinson’s disease or di-epa-drug/carboplatin who are experiencing symptoms of fulminant liver failure and should be treated with caution (see PRECAUTIONS: Haplodiploid).

Because of the risk of liver injury and because TASMIR, when it is effective, provides an observable symptomatic benefit, the patient who will benefit from the clinical benefit within 3 weeks of initiation of treatment, should be withdrawn from TASMIR.

TASMIR therapy should not be initiated if the patient exhibits clinical evidence of liver disease or two SGT/P/ST or SSTG/ST values greater than the upper limit of normal. Patients with severe dyskinesia or dystonia should not be treated with TASMIR.

Patients who develop evidence of hepatic injury while on TASMIR and are withdrawn from the drug for any reason may be at increased risk for liver injury if TASMIR is reinstated. Therefore, patients should be withdrawn from TASMIR.

Patients who develop hepatic complications while on TASMIR and are withdrawn from the drug for any reason may be at increased risk for liver injury.

TASMIR should not be used in patients with Parkinson’s disease or di-epa-drug/carboplatin who are experiencing symptoms of fulminant liver failure and should be treated with caution (see PRECAUTIONS: Haplodiploid).

Because of the risk of liver injury and because TASMIR, when it is effective, provides an observable symptomatic benefit, the patient who will benefit from the clinical benefit within 3 weeks of initiation of treatment, should be withdrawn from TASMIR.

Please READ THIS INFORMATION ONLY IF YOU HAVE BEEN CONSENTED TO TREATMENT WITH TASMIR (tocolpine). TASMIR should only be used in patients with Parkinson’s disease or di-epa-drug/carboplatin who are experiencing symptoms of fulminant liver failure and should be treated with caution (see PRECAUTIONS: Haplodiploid).
TASMAR® (tolcapone) TABLETS

It is important to understand that the information provided in this document is intended for healthcare professionals and does not replace personalized medical advice. The patient should discuss their specific medical condition with their healthcare provider.

SIDE EFFECTS

The most common adverse reactions observed in clinical trials were:

- Nausea
- Vomiting
- Abdominal pain
- Headache
- Diarrhea
- Constipation
- Flatulence
- Anemia
- Upper respiratory tract infection
- Cough
- Rash

The following adverse reactions have been reported in clinical trials:

- Headache
- Sedation
- Insomnia
- Dizziness
- Somnolence
- Abnormal dreams
- Mood swings
- Nervousness
- Paresthesia
- Tremor

PATIENT CONSENT

TASMAR SHOULD NOT BE USED BY PATIENTS UNTIL THERE HAS BEEN A COMPLETE DISCUSSION OF THE RISKS AND BENEFITS. INFORMED CONSENT HAS BEEN OBTAINED.

IMPORTANT INFORMATION AND WARNING

Reports of potentially dangerous cases of severe hepatocellular injury, including fulminant liver failure resulting in death, have been reported in association with use of TASMAR.

PATIENT CONSENT

My... treatment with TASMAR has been personally described to me by Dr.

The following points of information among others have been specifically discussed and made clear and I have had the opportunity to ask any questions concerning this information:

1.
2.
3.

**TASMAR therapy should not be initiated if the patient exhibits clinical signs of liver disease or if 2 or more of the following values are greater than the upper limit of normal:

- Serum ALT
- Total bilirubin
- Serum alkaline phosphatase

Serum alanine aminotransferase should be treated with caution (see PRECAUTIONS: Hepatotoxicity).

4. I understand that I should have the recommended blood work before my treatment with TASMAR is begun or continued every 2 weeks for the first year, then every 4 weeks for the next 6 months, and then every 8 weeks thereafter while taking TASMAR. I understand that although this blood work may help detect if liver damage is doing so after significant, irreversible and potentially fatal damage has already occurred.

5. I understand that the treatment with TASMAR may be taken with or without food.

6. I authorize Dr. to begin treatment with TASMAR OR, if my treatment has already begun, to continue such treatment.

Address

Physician's Name

Date

NOT TO PHYSICIAN: It is strongly recommended that you retain a signed copy of the informed consent with the patient's medical records.

SUPPLY OF PATIENT CONSENT FORMS:

A supply of "Patient Consent" forms as printed above, is available, free of charge, from your local Valetant representative, or may be obtained by calling 1-800-321-4576. Permission to use the above Patient Consent by photocopy or reproduction is hereby granted by Valetant Pharmaceuticals International.
MDS Committees and Task Forces

Archives
Chair: Andres M. Lozano
Members:
Stanley Fahn
Irene Litvan
John G. Nutt
Michael Schuler
Jerold Lee Vitek

Awards
Chair: Stanley Fahn
Members:
Paolo Barone
Kailash Bhatia
Robert Burke
Günter Deuschl
Nir Giladi
Etienne Hirsch
Matthew B. Stern
A. Jon Stoessl

Bylaws
Chair: David Riley
Members:
Murat Emre
Andrew Hughes
Pet Kanovsky
Janis Miyasaki
Marie Vidailhet
Gregor K. Wenning

Continuing Medical Education
Chair: Ronald Pfeiffer
Members:
Irene Litvan
David Riley
Robert Rodnitzky
Dee Silver
Michele Tagliati
Ryan J. Ütti
Cynthia L. Comella

Education
Chair: Cynthia L. Comella
Co-Chair: Fabrizio Stocchi
Members:
Joaquim Ferreira
Robert Iansek
Kelly Lyons
Austen Peter Moore
Oksana Suchorwersky
Clauia M. Trenkwalder
Mitsutoshi Yamamoto

Financial Affairs
Chair: Daniel Tarsy
Members:
Kailash Bhatia
Murat Emre
Yoshikuni Mizuno
C. Warren Olanow
Kapil D. Sethi

Industrial Relations
Chair: Matthew B. Stern
Co-Chair: Werner Poewe
Members:
Charles H. Adler
Paolo Barone
Richard Dodel
Yoshikuni Mizuno
Fabrizio Stocchi
Ray L. Watts

Journal Oversight
Chair: Joseph Jankovic
Members:
Francisco Cardoso
Anthony E. Lang
Andrew J. Lees
Yoshikuni Mizuno
Marie Vidailhet

Liaison/Public Relations
Chair: Regina Katzenschlager
Members:
Francisco Cardoso
Jonathan Carr
Andrew Evans
Joaquim Ferreira
Neziha Gouider-Khouja
Caroline M. Tanner

Membership
Chair: Francisco Cardoso
Members:
Chafiq Hicham
Shu Leong Ho
Robert Iansek
Regina Katzenschlager
Elan D. Louis
Uday Muthane
Mark A. Stacy
Francesca Valderrriola
Yoshikazu Ugawa

Scientific Issues
Chair: Serge Przedborski
Members:
Roger Barker
David Eidelberg
Vladimir Kostic
Andres M. Lozano
Timothy Lynch
Günter Deuschl

Strategy and Planning
Chair: Werner Poewe
Members:
Andrew J. Lees
C. Warren Olanow
Anthony E. Lang

Task Force for the Development of Rating Scales for Parkinson’s Disease
Steering Committee:
Chair: Christopher G. Goetz
Members:
Werner Poewe
Olivier Rascol
Cristina Sampaio
Glenn Stebbins

Task Force on Epidemiology
Chair: Caroline M. Tanner
Members:
Yoav Ben-Shlomo
Nadir Bharucha
James Bower
Piu Chan
Dusan Fislar
Amos D. Korczyn
Mathilde Leonardi
Elan D. Louis
Zvezdan Pirtoski
Gustavo Roman
Webster Ross

Task Force on Evidence-Based Medicine in Movement Disorders
Chair: Cristina Sampaio
Members:
Francisco Cardoso
Carl Clarke
Christopher G. Goetz
Austen Peter Moore
Werner Poewe
Olivier Rascol
Bob Van Hilten
MDS Committees and Task Forces

Task Force on Neurosurgery
Chair: Andres M. Lozano
Members:
Keyoumars Ashkan
Alim L. Benabid
Michael Dogali
Kelly Foote
Marwan I. Hariz
Zvi Israel
Joachim K. Krauss
Efstathios Papavassiliou
Hiroki Toda

Task Force on PD Dementia
Co-Chair: Bruno Dubois
Co-Chair: Murat Emre
Co-Chair: Ian G. McKeith
Members:
Dag Aarsland
G. A. Broe
Richard Brown
David John Burn
Jeffrey L. Cummings
Dennis Dickson
Charles Duyckaerts
Serge G. Gauthier
Christopher G. Goetz
Amos D. Korczyn
Andrew J. Lees
Richard Levy
Irene Litvan
Yoshikuni Mizuno
C. Warren Olanow
Werner Poewe
Niall P. Quinn
Cristina Sampaio
Eduardo Tolosa

UPDRS Revision Task Force
Chair: Christopher G. Goetz

UPDRS Part I
Chair: Werner Poewe
Subcommittee Members:
Bruno Dubois
Anette Schrag

UPDRS Part II
Chair: Matthew B. Stern
Subcommittee Members:
Anthony E. Lang
Peter LeWitt

UPDRS Part III
Chair: Stanley Fahn
Subcommittee Members:
Joseph Jankovic
C. Warren Olanow

UPDRS Part IV
Chair: Pablo Martinez-Martin
Subcommittee Members:
Andrew J. Lees
Olivier Rascol
Bob Van Hilten

Scale Development Standards
Chair: Glenn Stebbins
Subcommittee Members:
Robert Holloway
David Nyenhuis

Appendices
Chair: Cristina Sampaio
Subcommittee Members:
Richard Dodel
Jaime Kulisevsky

Statistical Testing
Chair: Barbara C. Tilley
Subcommittee Members:
Sue Leurgans
Jean Teresi

MDS Exhibit and Information Booth
Location: Lobby Area, Third Floor, Marriott

The Movement Disorder Society (MDS) is an international society of healthcare professionals committed to research and patient care in the fields of Parkinson's disease and other disorders of movement and motor control.

MDS supports and promotes a wide range of educational programming and other initiatives to advance scientific understanding and standards of care as they pertain to Movement Disorders. For this, MDS provides forums such as a high ranking journal, scientific symposia and international congresses.

Attendees are invited to take advantage of MDS member benefits by applying to the Society. Learn more about MDS initiatives and speak with a representative at the MDS Exhibit and Information Booth located in the third floor lobby area of the New Orleans Marriott during the following hours:
Friday, March 4 3:00 p.m. to 8:30 p.m.
Saturday, March 5 8:00 a.m. to 5:00 p.m.
Sunday, March 6 8:00 a.m. to 5:00 p.m.
Monday, March 7 8:00 a.m. to 5:00 p.m.
Tuesday, March 8 8:00 a.m. to 5:00 p.m.
Badges
All International Congress attendees should have received a name badge with their registration materials. Badges should be worn at all times as they will be used to control access into all International Congress sessions and activities. Individuals will be identified as follows:
Red = Delegate
Yellow = Exhibitor
Orange = Exhibitor Delegate
Green = Guest
Purple = Press
Black = Staff

Dates
March 5-8, 2005

Hotel Information

New Orleans Marriott
555 Canal Street
New Orleans, LA 70130 USA
Telephone: +1 504-581-1000
Fax: +1 504-523-6755
Internet: www.neworleansmarriott.com
The New Orleans Marriott serves as the headquarters hotel for the 9th International Congress. It is located on the edge of the historic French Quarter and within walking distance to the French Market, Riverwalk shopping, Bourbon Street and the Aquarium of the Americas. This 41-floor hotel has a health club and sauna, an on-site restaurant, laundry valet, full business center, concierge service, 24-hour room service and more.

Sheraton New Orleans
500 Canal Street
New Orleans, LA 70130 USA
Telephone: +1 504-525-2500
Fax: +1 504-561-0178
Internet: www.sheratonneworleans.com
The Sheraton New Orleans serves as a second venue for the 9th International Congress, located approximately one block south of the New Orleans Marriott. This hotel borders the historic French Quarter and is just steps away from several attractions such as the trendy Warehouse Arts District, Aquarium of the Americas, Harrah's Casino, a streetcar ride to the beautiful Garden District and many world renowned restaurants. The Sheraton recently completed a $25 million renovation that includes Sweet Sleeper mattresses and bedding and leather chairs. Other amenities include a fitness center with 24-hour access and spa amenities, concierge service, business center, 24-hour room service and more.

Holiday Inn French Quarter
124 Royal Street
New Orleans, LA 70130 USA
Telephone: +1 504-529-7211
Fax: +1 504-566-1127
Internet: www.holidayinnfrenchquarter.com
The Holiday Inn French Quarter is providing guestrooms for International Congress delegates. This hotel is located one block and a half north of the New Orleans Marriott, is only one block from the legendary Bourbon Street, and minutes from world famous shopping, restaurants and nightspots. This hotel has 347 beautifully decorated guestrooms, plus spacious King Leisure rooms featuring a sitting area and sofa sleeper. Amenities include an indoor heated pool, sun deck, and a complimentary exercise facility.

Language
The official language of the International Congress is English.

Registration Desk
Location: Lobby Area, Second Floor, Marriott
Name badges, session tickets, special event tickets and International Congress registration bags can be collected at the International Congress Registration Desk located in the Preservation Hall Lobby of the New Orleans Marriott.

Registration Desk Hours
- Friday, March 4: 3:00 p.m. to 8:30 p.m.
- Saturday, March 5: 7:00 a.m. to 8:30 p.m.
- Sunday, March 6: 7:00 a.m. to 7:30 p.m.
- Monday, March 7: 7:00 a.m. to 6:00 p.m.
- Tuesday, March 8: 7:00 a.m. to 9:00 p.m.

Venues

New Orleans Marriott
555 Canal Street
New Orleans, LA 70130 USA
Scientific Sessions, Registration, Exhibits, Posters, Internet Café

Sheraton New Orleans
500 Canal Street
New Orleans, LA 70130 USA
Scientific Sessions
The New Orleans Marriott and the Sheraton New Orleans are located across the street from each other on Canal Street.
International Congress Information

Abstract Volume
All abstracts accepted for poster presentation have been published in an abstract supplement to the MDS Journal, Movement Disorders. Each delegate should have received one copy with their registration materials. MDS members have already received an additional copy with their January journal issue.

Abstracts-On-Disk™
All abstracts published in the supplement to the MDS Journal are available by Abstracts-On-Disk™, which has been sponsored by MDS and supported by an unrestricted educational grant from Medtronic Neurological. To obtain a copy, please visit the Medtronic Booth #300 and exchange the voucher located in your registration bag.

Continuing Medical Education
Objectives
As a result of participating in this activity, the attendee should be better able to:
- Describe the pathophysiology and neurobiology of Parkinson’s disease and other Movement Disorders
- Discuss the diagnostic approaches and tools available for Parkinson’s disease and other Movement Disorders
- Discuss the pharmacological and non-pharmacological treatment options available for Parkinson’s disease and other Movement Disorders

Target Audience
The target audience of the 9th International Congress of Parkinson’s Disease and Movement Disorders includes clinicians, researchers, post-doctoral fellows, medical residents and medical school students with an interest in the current research and approaches for the diagnosis and treatment of Movement Disorders.

Availability of CME Credit
The Movement Disorder Society is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

The Scientific Program of the 9th International Congress of Parkinson’s Disease and Movement Disorders has been reviewed and approved for Category 1 credit toward the American Medical Association (AMA) Physician’s Recognition Award. The Movement Disorder Society has approved this educational activity for a maximum of 38.25 Category 1 credits. Each physician should claim only those credits that he/she actually spent in the educational activity. One credit may be claimed for each hour of participation.

Reciprocity between the European and AMA PRA Credit Systems
A pilot CME credit reciprocity system between the European Union of Medical Specialists (UEMS) and the American Medical Association (AMA) has been extended until 2006. Under the terms of this joint agreement, the UEMS and AMA agree to the exchange and reciprocal recognition of AMA PRA Category 1 and EACCMCE (European Accreditation Council for Continuing Medical Education) credits earned through participation in approved live educational activities.

Requesting CME Credit Certificates
In order to receive a CME Certificate authenticating participation in this educational activity, International Congress participants must complete and submit a CME Request Form following their participation in the Congress.

Completed CME Request Forms should be handed to meeting room attendants along with completed evaluation forms. Alternatively, completed CME Request Forms can be returned to the CME Desk situated near the Registration Desk on the second floor of the New Orleans Marriott or placed in one of the drop boxes located throughout the Marriott.

Participants can find CME Request Forms for the International Congress in their International Congress registration bags. International Congress registration bags should have been collected upon registering at the Registration Desk on the second floor of the New Orleans Marriott. Additional CME Request Forms can be obtained from the CME Desk near the Registration Desk.

Faculty Financial Disclosure Information
It is the policy of The Movement Disorder Society (MDS) to ensure balance, independence, objectivity and scientific rigor in all sponsored educational activities. All faculty participating in any MDS sponsored activities are required to disclose to the activity audience any real or apparent conflict(s) of interest that may have a direct bearing on the subject matter of the Continuing Medical Education (CME) activity. This pertains to relationships with pharmaceutical companies, biomedical device manufacturers, or other corporations whose products or services are related to the subject matter of the present topic. The intent of this policy is not to prevent a speaker with a potential conflict of interest from making a presentation. It is merely intended that any potential conflict should be identified openly so that the listeners may form their own judgments about the presentation with the full disclosure of the facts. It remains for the audience to determine whether the speaker’s outside interest may reflect a possible bias in either the exposition or the conclusions presented.

Please see the yellow insert in your International Congress registration bag for complete information regarding faculty disclosure of commercial relationships.
Faculty Disclosure of Unlabeled Product Use
Discussion
Presentations which provide information in whole or in part related to non-approved uses for drug products and/or devices must clearly acknowledge the unlabeled indications or the investigative nature of their proposed uses to the audience. Speakers who plan to discuss non-approved uses for commercial products and/or devices must advise the International Congress audience of their intent. Please see the yellow insert in your International Congress registration bag for complete information regarding faculty disclosure of unlabeled product use discussion.

Evaluations
Please take time to complete the evaluation form provided for each session you attend. Your input and comments are essential in planning future educational programs for MDS. When completed, evaluations may be returned to your meeting room attendants, the evaluation drop boxes, the MDS Registration Desk or the CME Desk.

Exhibition
Location: Preservation Hall and LaGalerie, Second Floor, Marriott
Please allow adequate time in your daily schedule to visit the exhibits located in Preservation Hall and La Galerie of the New Orleans Marriott. The exhibition is an integral component of your International Congress experience, offering you the opportunity to speak with representatives of companies that provide services and market products directly related to Movement Disorders. Representatives will be available to discuss these services and products during the following hours:
- Saturday, March 5 9:15 p.m. to 11:00 p.m.
- Sunday, March 6 8:00 a.m. to 5:00 p.m.
- Monday, March 7 8:00 a.m. to 5:00 p.m.
- Tuesday, March 8 8:00 a.m. to 5:00 p.m.

Internet Café
Location: Lobby Area, Third Floor, Marriott
Internet access is available to meeting attendees on the third floor of the New Orleans Marriott. Please limit your Internet use to 15 minutes to allow other attendees use of this service.

MDS Exhibit and Information Booth
Location: Lobby Area, Third Floor, Marriott
The Movement Disorder Society (MDS) is an international society of healthcare professionals committed to research and patient care in the fields of Parkinson’s disease and other disorders of movement and motor control.

MDS supports and promotes a wide range of educational programming and other initiatives to advance scientific understanding and standards of care as they pertain to Movement Disorders. For this, MDS provides forums such as a high ranking journal, scientific symposia, educational workshops and International Congresses.

Attendees are invited to take advantage of MDS member benefits by applying to the Society. Learn more about MDS initiatives and speak with a representative at the MDS Exhibit and Information Booth located in the third floor lobby area of the New Orleans Marriott during the following hours:
- Friday, March 4 3:00 p.m. to 8:30 p.m.
- Saturday, March 5 8:00 a.m. to 5:00 p.m.
- Sunday, March 6 8:00 a.m. to 5:00 p.m.
- Monday, March 7 8:00 a.m. to 5:00 p.m.
- Tuesday, March 8 8:00 a.m. to 5:00 p.m.

MDS History Exhibit
Location: Lobby Area, Third Floor, Marriott
Funded through an unrestricted grant from Cephalon.
Continuing a tradition established by MDS, a history exhibit is on display throughout the duration of the International Congress. This year’s exhibit honors the 250th anniversary of James Parkinson’s birth, focusing on Parkinson himself and the early history of Parkinson’s disease. Original books, manuscripts, letters, photographs, medical artifacts and instruments related to the early history of Parkinson’s disease are displayed in glass cases.

The MDS membership has been the primary source for these original artifacts; other items have been loaned from libraries and private collections. Archival films documenting early clinical demonstrations of Parkinson’s disease and related disorders, as well as several celebrated neurologists examining Movement Disorder patients, accompany the exhibit.

The MDS History Exhibit will be displayed in the third floor lobby area of the New Orleans Marriott. The hours are as follows:
- Friday, March 4 3:00 p.m. to 8:30 p.m.
- Saturday, March 5 7:00 a.m. to 5:00 p.m.
- Sunday, March 6 7:00 a.m. to 5:00 p.m.
- Monday, March 7 7:00 a.m. to 5:00 p.m.
- Tuesday, March 8 7:00 a.m. to 5:00 p.m.

No Cameras
Cameras are not permitted in any 9th International Congress educational session or in the poster areas.
International Congress Information

Opening Ceremony and Welcome Reception
Location: Acadia Room, Mardi Gras Ballroom, Preservation Hall, La Galerie, Second and Third Floor, Marriott
The Opening Ceremony will take place on Saturday, March 5 at 8:30 p.m in the Acadia Room. A Welcome Reception will follow immediately after the Opening Ceremony. These events are open to all delegates and registered guests.

Optional Tours Desk
Location: Lobby Area, Second Floor, Marriott
Tours have been arranged by Visit New Orleans. Please visit the Tours Desk in the Registration Area on the second floor of the New Orleans Marriott to collect your tickets. Additional tour tickets may be purchased at the desk, based on availability.

Press Room
Location: Audubon Room, Fifth Floor, Marriott
Members of the working media receive waived registration fees for the 9th International Congress. Journalists and writers should report to the Press Room with their credentials to register for the International Congress and must wear their name badge for admittance into MDS sessions. The Press Room will be open during the following hours:
- Saturday, March 5: 8:00 a.m. to 5:00 p.m.
- Sunday, March 6: 8:00 a.m. to 5:00 p.m.
- Monday, March 7: 8:00 a.m. to 5:00 p.m.
- Tuesday, March 8: 8:00 a.m. to 5:00 p.m.

Scientific Sessions
The 2005 Scientific Program incorporates Kickoff Seminars, Plenary and Parallel Sessions, Skills Workshops, Video Sessions and Poster Sessions. Although the ever popular Kickoff and Plenary Sessions follow a style similar to the 2002 Miami and 2004 Rome International Congresses, Parallel Sessions and Skills Workshops have been newly designed to meet the need for smaller, more focused sessions. These sessions are offered to an audience size of 50-200 participants resulting in greater opportunity for audience participation.

Tickets are required for admission into all Parallel Sessions, Video Sessions and Skills Workshops. There is no additional fee for tickets to these sessions. Please check the On-Site Registration Desk for availability of these tickets.

Platform Presentations
Abstracts have been selected for oral platform presentation at the International Congress. The selected abstracts feature newsworthy and cutting-edge information about Parkinson's disease and Movement Disorders. The Platform Presentations are open to all International Congress delegates.

Abstract Poster Sessions
Delegate feedback from past International Congresses has indicated great interest in Poster Sessions. Poster Sessions are featured each day based upon the following schedule:

- **Poster Session 1**
 - Location: Mardi Gras Ballroom, Third Floor, Marriott
 - Sunday, March 6
 - Poster Viewing: 8:30 a.m. to 5:00 p.m.
 - Authors Present: 12:45 p.m. to 2:30 p.m.
 - Abstracts: 1-187

- **Poster Session 2**
 - Location: Mardi Gras Ballroom, Third Floor, Marriott
 - Monday, March 7
 - Poster Viewing: 8:30 a.m. to 5:00 p.m.
 - Authors Present: 12:30 p.m. to 2:15 p.m.
 - Abstracts: 188-383

- **Poster Session 3**
 - Location: Mardi Gras Ballroom, Third Floor, Marriott
 - Tuesday, March 8
 - Poster Viewing: 8:30 a.m. to 5:00 p.m.
 - Authors Present: 12:45 p.m. to 2:30 p.m.
 - Abstracts: 384-592

Speaker Ready Room
Location: Bonaparte Room, Fourth Floor, Marriott
All speakers must check-in to the Speaker Ready Room with presentation materials on the day prior to their scheduled presentation. Audiovisual personnel will be available for assistance. The Speaker Ready Room hours are as follows:

- Friday, March 4: 5:00 p.m. to 8:00 p.m.
- Saturday, March 5: 7:30 a.m. to 7:00 p.m.
- Sunday, March 6: 7:30 a.m. to 7:00 p.m.
- Monday, March 7: 7:30 a.m. to 7:00 p.m.
- Tuesday, March 8: 7:30 a.m. to 7:00 p.m.
<table>
<thead>
<tr>
<th>Time</th>
<th>Saturday</th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:30 a.m.</td>
<td>Committee Meetings</td>
<td>6:30 a.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00 a.m.</td>
<td>Committee Meetings</td>
<td>7:00 a.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 a.m.</td>
<td>Kickoff Seminars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 a.m.</td>
<td>Plenary Session</td>
<td>9:00 a.m.</td>
<td>Fahn Lecture</td>
<td></td>
</tr>
<tr>
<td>10:00 a.m.</td>
<td>Marsden Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 a.m.</td>
<td>Parallel Sessions</td>
<td>11:00 a.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 p.m.</td>
<td>Poster Session</td>
<td>12:00 p.m.</td>
<td>1:00 p.m.</td>
<td></td>
</tr>
<tr>
<td>1:00 p.m.</td>
<td>Platform Presentations/ Junior Awards</td>
<td>Plenary Session</td>
<td>Poster Session</td>
<td>Highlights Session</td>
</tr>
<tr>
<td>2:00 p.m.</td>
<td>Parallel Sessions</td>
<td>2:00 p.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td>Platform Presentations/ Junior Awards</td>
<td>Plenary Session</td>
<td>Highlights Session</td>
<td></td>
</tr>
<tr>
<td>4:00 p.m.</td>
<td>Parallel Sessions</td>
<td>4:00 p.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00 p.m.</td>
<td>Skills Workshops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00 p.m.</td>
<td>Video Sessions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00 p.m.</td>
<td>Plenary Session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 p.m.</td>
<td>Opening Ceremony and Welcome Reception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 p.m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Because she thinks the world of him

For patients like Edward living with Parkinson's disease, it's the simple tasks that are important, like helping to fix his granddaughter's bike. However, living with PD makes it increasingly difficult to do even the simplest things in life.¹ REQUIP can help. With REQUIP, patients like Edward are able to maintain their ability to perform activities of daily living while significantly reducing the risk of dyskinesia vs l-dopa.²

Make a difference for your patients with Parkinson's disease.

Safety and effectiveness in the pediatric population have not been established.

REQUIP has been associated with sedating effects, including somnolence, and the possibility of falling asleep while engaged in activities of daily living, including operation of a motor vehicle. Syncope or symptomatic hypotension may occur more frequently during initial treatment or with an increase in dose. Hallucinations may occur at any time during treatment. REQUIP may potentiate the dopaminergic side effects of l-dopa and may cause and/or exacerbate pre-existing dyskinesias.

Please see brief summary of complete Prescribing information on adjacent page.

FOR THE TREATMENT OF PARKINSON'S DISEASE

REQUIP ropinirole HCl

A Progressive Therapy for a Progressive Disease
REQUIP (ripatropine hydrochloride) Tablets

BRIEF SUMMARY

Ripatropine hydrochloride tablets are indicated for the treatment of acute bronchitis and chronic obstructive pulmonary disease (COPD) to reduce respiratory symptoms, such as coughing and breathlessness.

INDICATIONS AND USAGE: REQUIP is indicated for the treatment of asthma and chronic obstructive pulmonary disease (COPD) in patients 12 years of age and older.

CONTRAINDICATIONS: REQUIP is contraindicated in patients who are hypersensitive to ripatropine or any of the other components of the formulation.

WARNINGS: Falling Asleep During Activities of Daily Living: Patients treated with REQUIP have reported falling asleep while engaged in activities or daily living, including the operation of motor vehicles or the use of machinery which sometimes involves attentive behavior or physical activity. Patients should be advised to discontinue the treatment with REQUIP if they experience excessive sleepiness or other symptoms indicating an increased risk of falling asleep during activities of daily living. Patients should be advised to discontinue treatment if they develop symptoms of narcolepsy or other sleep disorders.

DOSEAGE AND ADMINISTRATION for guidance in discontinuing REQUIP. If a decision is made to continue treatment with REQUIP, the dosage of the drug should be reduced to the minimum effective level to minimize the risk of central nervous system effects.

ADVERSE REACTIONS: The most common adverse events reported in patients treated with REQUIP are headache, dizziness, abdominal pain, constipation, nausea, and vomiting.

PRECAUTIONS: Patients with a history of glaucoma, asthma, or other respiratory conditions should be advised to consult their healthcare provider before using REQUIP.

DRUG INTERACTIONS: Patients taking REQUIP should be advised to inform their healthcare provider if they are taking concurrent medications that may interact with ripatropine.

PREGNANCY: REQUIP is category C. It is not known whether ripatropine crosses the placenta or is excreted in breast milk. Studies in pregnant rats have shown no evidence of fetal toxicity; however, ripatropine has been shown to cause increased fetal resorptions in rabbits. Therefore, it is recommended that pregnant women avoid taking REQUIP.

NURSING MOTHERS: It is not known whether ripatropine is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when REQUIP is administered to a nursing mother.

PEDIATRIC USE: The safety and efficacy of REQUIP in children have not been established. However, ripatropine has been shown to be effective in children with chronic obstructive pulmonary disease (COPD) in clinical trials.

ADVERSED EVENTS: The most common adverse events reported in patients treated with REQUIP are headache, dizziness, abdominal pain, constipation, nausea, and vomiting. These adverse events were generally mild to moderate in severity and were reversible upon discontinuation of treatment. The frequency and nature of these adverse events were not different in patients who received ripatropine compared to those who received placebo.

PATIENT COUNSELING: Patients should be advised to discontinue treatment if they experience any adverse events that are considered to be severe or life-threatening. Patients should be informed that ripatropine may cause drowsiness, and they should be advised to avoid driving or engaging in other activities that require mental alertness or physical activity.

OVERDOSAGE: In case of overdose, supportive and symptomatic therapy should be given. There is no specific antidote for ripatropine overdose. The usual supportive and symptomatic treatment measures should be employed. The management of overdosage should be based on the degree of toxicity and the general condition of the patient.

PHARMACOTHERAPEUTIC CATEGORY: Nasal decongestant.
9th International Congress of Parkinson’s Disease & Movement Disorders

Scientific Program ~ Saturday

Saturday, March 5

Kickoff Seminars
Admission to these sessions is by delegate name badge. No ticket is required for admission to Kickoff Sessions.

8:00 a.m. to 9:00 a.m.

1001 Novel delivery of MAO-B inhibition
Location: Carondelet Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Valeant Pharmaceuticals International.
 Chair: Kapil D. Sethi
 Augusta, GA, USA

Update on clinical studies
Cheryl Waters
New York, NY, USA

Rationale for development
Peter A. LeWitt
Southfield, MI, USA

Panel discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the use of major inhibitors in Parkinson’s disease; 2. Explain the use of novel methods of delivery of MAO-B in Parkinson’s disease patients, this includes sublingual and patch formulations; 3. Differentiate oral compounds from novel MAO-B delivery.

9:00 a.m. to 11:00 a.m.

1002 Dopamine agonists in the treatment of Parkinson’s disease and restless legs syndrome
Location: Acadia Room, Third Floor, Marriott
Supported through an unrestricted educational grant from GlaxoSmithKline.
 Chairs: Anthony E. Lang
 Toronto, Canada
 José A. Obeso
 Pamplona, Spain

RLS: epidemiology and disease burden
Cynthia L. Comella
Chicago, IL, USA

RLS: treatment
Diego García Borreguero
Madrid, Spain

PD: agonists and motor complications
Charles H. Adler
Scottsdale, AZ, USA

PD: agonists and neuroprotection
David J. Brooks
Isleworth, United Kingdom

Panel discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the epidemiology, symptomatology and disease burden of restless legs syndrome; 2. Indicate the various treatment options for restless legs syndrome and their outcomes; 3. Recognize the influence of dopamine agonists on the development and management of motor complications as well as their potential effect on disease progression.

11:00 a.m. to 12:00 p.m.

1401 Rescue therapy for Parkinson’s disease
Location: Carondelet Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Mylan Bertek Pharmaceuticals Inc.
 Chair: Andrew J. Lees
 London, United Kingdom

On-off episodes
Peter A. LeWitt
Southfield, MI, USA

Role of apomorphine in treating off episodes
Mark A. Stacy
Durham, NC, USA

Panel discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the phenomena which are included in the rubric of motor fluctuations; 2. Discuss the role of apomorphine as a rescue therapy in Parkinson’s disease; 3. Define the indications for the use of subcutaneous apomorphine in Parkinson dosing.

12:00 p.m. to 1:30 p.m.

1402 MAO-B inhibitors: back to the future
Location: Acadia Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Lundbeck, Teva Pharmaceutical Industries Ltd, Teva Neuroscience and Eisai.
 Chairs: C. Warren Olanow
 New York, NY, USA
 Anthony H.V. Schapira
 London, United Kingdom

Propargylamines
Anthony H.V. Schapira
London, United Kingdom

New clinical data
Werner Poewe
Innsbruck, Austria

Disease modification approaches
Karl D. Kieburtz
Rochester, NY, USA

Panel discussion

Opening Ceremony and Welcome Reception
Location: Acadia Room, Mardi Gras Ballroom, Preservation Hall, La Galerie, Second and Third Floor, Marriott
The Opening Ceremony will take place on Saturday, March 5 at 8:30 p.m. in the Acadia Room on the Third Floor of the Marriott New Orleans. A Welcome Reception will follow immediately after the Opening Ceremony and will take place in the Mardi Gras Ballroom on the Third Floor and the Exhibit Halls on the Second Floor. These events are open to all delegates and registered guests.
Scientific Program ~ Saturday

2:00 p.m. to 3:00 p.m.
1601 Dopamine agonists: new considerations
Location: Carondelet Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Boehringer Ingelheim.

Chairs: Yoshikuni Mizuno
Tokyo, Japan
Matthew B. Stern
Philadelphia, PA, USA

Non-motor features of Parkinson’s disease and possible role of dopamine agonists
Matthew B. Stern
Philadelphia, PA, USA

Long-term studies of dopamine agonists and disease modification
Kenneth Marek
New Haven, CT, USA

Panel discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Recognize important non-motor features of Parkinson’s disease; 2. Discuss current concepts in modifying the long-term progression of Parkinson’s disease; 3. Recognize the indications and role of Dopamine agonists in the treatment of Parkinson’s disease.

3:00 p.m. to 5:00 p.m.
1602 Levodopa: a new look at an old drug
Location: Acadia Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Novartis/Orion Pharma.

Chairs: Peter Jenner
London, United Kingdom
Fabrizio Stocchi
Roma, Italy

Levodopa: is it toxic?
Stanley Fahn
New York, NY, USA

Levodopa: how does it cause motor complications?
Speaker to be announced

A rationale for the early use of carbidopa/levodopa/entacapone
Fabrizio Stocchi
Roma, Italy

Panel discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Understand the debate over whether levodopa is potentially neurotoxic to remaining dopaminergic neurones in Parkinson’s disease; 2. Recognize the range of motor complications caused by levodopa and the mechanism responsible for their development; 3. Recognize the therapeutic usefulness of levodopa in the treatment of Parkinson’s disease.

5:00 p.m. to 6:00 p.m.
1901 Tolcapone: a non-jaundiced view
Location: Carondelet Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Valeant Pharmaceuticals International.

Chair: Yves Agid
Paris, France

Tolcapone: an update
Ray Watts
Birmingham, AL, USA

Safety considerations
Speaker to be announced

Panel discussion

6:00 p.m. to 8:00 p.m.
1902 Restless legs syndrome: a kickoff
Location: Acadia Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Boehringer Ingelheim.

Chairs: David Rye
Atlanta, GA, USA
Claudia M. Trenkwalder
Kassel, Germany

Etiology and pathogenesis
Richard Allen
Arnold, MD, USA

Clinical features
William Ondo
Houston, TX, USA

Therapeutics
Wayne A. Hening
New York, NY, USA

Panel discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Define the clinical diagnostic criteria of restless legs syndrome and recognize them in a patient interview; 2. Discuss the differential diagnosis of patients with restless legs syndrome and explain the major pathophysiological hypothesis of the syndrome. 3. Indicate the need for treatment in RLS and discuss the advantages and problems of pharmacological therapy in RLS patients.

7:00 p.m. to 8:00 p.m.
1903 Botulinum toxins for Movement Disorders 2005
Location: Carondelet Room, Third Floor, Marriott
Supported through an unrestricted educational grant from Allergan.

Chairs: Alfredo Berardelli
Roma, Italy
Cynthia L. Comella
Chicago, IL, USA

Basic pharmacology and immunology
Joseph Jankovic
Houston, TX, USA

Clinical aspects of botulinum toxin
Dirk Dressler
Rostock, Germany

Panel discussion
Scientific Program ~ Sunday

Sunday, March 6, 2005

Plenary Sessions

Admission to these sessions is by delegate name badge. No ticket is required for admission to Plenary Sessions.

8:30 a.m. to 9:30 a.m.
2101 Parkinson's disease
Location: Acadia Room, Third Floor, Marriott
Chair: Anthony E. Lang
Toronto, Canada

8:30 a.m. Etiology and pathogenesis in Parkinson's disease
Yoshikuni Mizuno
Tokyo, Japan

9:00 a.m. Medical therapeutics in Parkinson's disease
Anthony E. Lang
Toronto, Canada

Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the current concepts of etiology of Parkinson's disease including recent genetic discoveries; 2. Explain the current concepts of pathogenesis of cell death in Parkinson's disease; 3. Describe the latest developments in the field of medical therapeutics in Parkinson's disease.

9:30 a.m. to 10:00 a.m.
2102 C. David Marsden Lecture
Location: Carondelet Room, Third Floor, Marriott
Overflow: Carondelet Room, Third Floor, Marriott
Alim L. Benabid
Grenoble, France

10:30 a.m. Clinical features (distinguishing PD from atypical parkinsonism)
Eduardo Tolosa
Barcelona, Spain

11:00 a.m. Role of neuroimaging in early Parkinson's disease (SWEDD issue)
Kenneth Marek
New Haven, CT, USA

11:30 a.m. Early treatment for Parkinson's disease
Karl D. Kieburtz
Rochester, NY, USA

12:00 p.m. Discussion
At the conclusion of this session, participants should be able to: 1. Identify the main clinical features of Parkinson's disease; 2. Recognize early Parkinson's disease from similar disorders; 3. Identify appropriate treatment for early Parkinson's disease.

2201 Early untreated Parkinson's disease
Location: Carondelet Room, Third Floor, Marriott
Chair: Karl D. Kieburtz
Rochester, NY, USA

10:30 a.m. Clinical features (distinguishing PD from atypical parkinsonism)
Eduardo Tolosa
Barcelona, Spain

11:00 a.m. Role of neuroimaging in early Parkinson's disease (SWEDD issue)
Kenneth Marek
New Haven, CT, USA

11:30 a.m. Early treatment for Parkinson's disease
Karl D. Kieburtz
Rochester, NY, USA

12:00 p.m. Discussion
At the conclusion of this session, participants should be able to: 1. Identify the main clinical features of Parkinson's disease; 2. Recognize early Parkinson's disease from similar disorders; 3. Identify appropriate treatment for early Parkinson's disease.

2202 Tourette syndrome
Location: Balcony K, Fourth Floor, Marriott
Chair: David G. Lichter
Clarence, NY, USA

10:30 a.m. Clinical overview - including epidemiology, phenomenology, diagnosis
Anette Schrag
London, United Kingdom

11:00 a.m. Etiology/pathogenesis/pathophysiology
Harvey S. Singer
Baltimore, MD, USA

11:30 a.m. Therapy - current and experimental
David G. Lichter
Clarence, NY, USA

12:00 p.m. Discussion
At the conclusion of this session, participants should be able to: 1. Describe the epidemiology, phenomenology and diagnostic criteria for Tourette's syndrome; 2. Discuss current concepts of etiology, pathogenesis and pathophysiology of Tourette's syndrome; 3. Describe current therapy and experimental treatments for Tourette's syndrome, including deep brain stimulation.

Evaluations

Please take time to complete the evaluation form provided for each session you attend. Your input and comments are essential in planning future educational programs for MDS.

When completed, evaluations may be returned to your meeting room attendants, the evaluation drop boxes, the MDS Registration Desk or the CME Desk.
Scientific Program ~ Sunday

2203 FTD
Location: Balcony L, Fourth Floor, Marriott
Chair: Zbigniew K. Wszolek
Jacksonville, FL, USA
10:30 a.m. Clinical features, classification and imaging
Zbigniew K. Wszolek
Jacksonville, FL, USA
11:00 a.m. Neuropathology and pathogenesis
Ian Mackenzie
Vancouver, Canada
11:30 a.m. FTD/P17/Molecular biology of tau
Peter Heutink
Amsterdam, Netherlands
12:00 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the clinical features, current classifications and neuroimaging characteristics of fronto-temporal dementias (FTD); 2. Describe the current veins of pathogenesis of FTD and list the neuropathological findings seen in this class of disorders; 3. Recognize the molecular genetics of fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTD P-17), and understand the molecular biology of tau.

2204 Surgery for Movement Disorders
Location: Napoleon A, Third Floor, Sheraton
Chair: Pierre Pollak
Grenoble, France
10:30 a.m. Surgery for Parkinson's disease
Jens Volkman
Kiel, Germany
11:00 a.m. Surgery for dystonia
Marie Vidailhet
Paris, France
11:30 a.m. Surgery for Movement Disorders and future directions
Pierre Pollak
Grenoble, France
12:00 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Define eligible patients with Movement Disorders for surgical therapy and list the various surgical techniques available; 2. Discuss the results of reported clinical trials related to the surgical treatments of Parkinson's disease, dystonia or other Movement Disorders; 3. Discuss the future of developing experimental surgical therapies for Movement Disorders.

2205 The role of neuroimaging in Movement Disorders
Location: Napoleon B, Third Floor, Sheraton
Chair: David J. Brooks
London, United Kingdom
10:30 a.m. PET/SPECT in Movement Disorders
David Eidelberg
Manhasset, NY, USA
11:00 a.m. MR/MRS in Movement Disorders
Klaus Seppi
Innsbruck, Austria
11:30 a.m. Practical application of neuroimaging in Movement Disorders
David J. Brooks
London, United Kingdom
12:00 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the possible applications of MRI, PET and SPECT; 2. Discuss the role of imaging in the differential diagnosis of Parkinson's disease; 3. Discuss the role of imaging in the management of Parkinson's disease.

2206 Sleep disorders in Parkinson's disease
Location: Napoleon C, Third Floor, Sheraton
Chair: Claudia M. Treinkwalder
Kassel, Germany
10:30 a.m. Functional anatomy and physiology of sleep
David Rye
Atlanta, GA, USA
11:00 a.m. REM behavior disorder
Claudia M. Treinkwalder
Kassel, Germany
11:30 a.m. Excessive daytime sleepiness
Cynthia L. Comella
Chicago, IL, USA
12:00 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the major principles of sleep physiology and explain its pathomechanism in Parkinsonian sleep; 2. Recognize the key features of REM sleep behavior disorder in Parkinson syndromes and explain the major pathophysiological hypothesis; 3. Define excessive daytime sleepiness and discuss the various reasons for daytime sleepiness in Parkinson's disease patients.
Scientific Program ~ Sunday

2207 Magnetic stimulation and Movement Disorders
Location: Napoleon D, Third Floor, Sheraton
Chair: John C. Rothwell
 London, United Kingdom
10:30 a.m. How TMS works and insights it provides into Movement Disorders
 Robert Chen
 Toronto, Canada
11:00 a.m. TMS and plasticity
 Angelo Quartarone
 Messina, Italy
11:30 a.m. TMS as a therapy in Movement Disorders
 John C. Rothwell
 London, United Kingdom
12:00 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Explain the mechanisms of action of transcranial magnetic stimulation and be aware of the various techniques that can be applied in patients with Movement Disorders; 2. Explain how TMS can be used to address questions of functional plasticity in the motor system and understand how abnormalities in this system contribute to symptoms of dystonia; 3. Discuss the potential of TMS methods as therapeutic options to treat Movement Disorders.

Abstract Sessions
Admission to these sessions is by delegate name badge. No ticket is required for admission to Poster Sessions or Platform Presentations.
12:45 p.m. to 2:30 p.m.
2501 Poster Session 1
Location: Mardi Gras Ballroom, Third Floor, Marriott
Poster Viewing: 8:30 a.m. to 5:00 p.m.
Authors Present: 12:45 p.m. to 2:30 p.m.
Abstracts: 1-187
2:30 p.m. to 4:00 p.m.
2502 Platform Presentations/Junior Awards
Location: Acadia Room, Third Floor, Marriott
Please refer to the Platform Presentation flyer in your registration bag for a listing of Platform Presentation Abstracts.
2503 Platform Presentations/Junior Awards
Location: Carondelet Room, Third Floor, Marriott
Please refer to the Platform Presentation flyer in your registration bag for a listing of Platform Presentation Abstracts.

Parallel Sessions
A ticket is required for admission to these smaller, interactive sessions. Attendance for Parallel Sessions is limited. There are no additional fees for tickets. Delegates that do not have tickets to these sessions, but would like to attend, are asked to check at the On-Site Registration Desk for ticket availability.
4:00 p.m. to 6:30 p.m.
2601 Motor complications in Parkinson’s disease
Location: Carondelet Room, Third Floor, Marriott
Chair: Andrew J. Lees
 London, United Kingdom
4:00 p.m. Clinical and epidemiological features of motor complications
 Andrew J. Lees
 London, United Kingdom
4:30 p.m. Pathogenesis of motor complications
 José A. Obeso
 Pamplona, Spain
5:00 p.m. Medical and surgical management
 Paul Krack
 Grenoble, France
 Andrew J. Lees
 London, United Kingdom
5:45 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Recognize and categorize motor fluctuations and dyskinesia types; 2. Discuss the epidemiology and risk factors; 3. Discuss medical treatment options.

2602 Pediatric Movement Disorders
Location: Napoleon D, Third Floor, Sheraton
Chair: Jonathan Mink
 Rochester, NY, USA
4:00 p.m. Movement Disorders unique to childhood
 Jonathan Mink
 Rochester, NY, USA
4:30 p.m. Movement Disorders and cerebral palsy
 Terence Sanger
 Stanford, CA, USA
5:00 p.m. Lesch-Nyhan and the effects of early dopamine loss
 Hyder A. Jinnah
 Baltimore, MD, USA
5:30 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Recognize Movement Disorders that are unique to children; 2. Discuss Movement Disorders commonly seen in children with cerebral palsy and understand factors that contribute to the different manifestations in children as compared to adults; 3. Discuss the different effects of dopamine deficiency in children vs. adults and to understand mechanisms underlying Lesch-Nyhan disease.
Scientific Program ~ Sunday

2603 Essential Tremor
Location: Balcony L, Fourth Floor, Marriott
Chair: Günther Deuschl
Kiel, Germany
4:00 p.m. **Clinical overview - including epidemiology, diagnosis and imaging**
Elan D. Louis
New York, NY, USA
4:30 p.m. **Etiology/pathogenesis**
Günther Deuschl
Kiel, Germany
5:00 p.m. **Therapy - medical and surgical**
Rajesh Pahwa
Kansas City, KS, USA
5:30 p.m. **Discussion**

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the clinical diagnosis and differential diagnosis; 2. Discuss the epidemiology and pathophysiology of essential tremor; 3. Describe current and experimental treatment of essential tremor.

2604 Gene and cell based therapies
Location: Napoleon A, Third Floor, Sheraton
Chair: Olle Lindvall
Lund, Sweden
4:00 p.m. **Update on transplantation - fetal nigral and other dopaminergic cell types**
Patrik Brundin
Lund, Sweden
4:30 p.m. **Update on stem cells**
Olle Lindvall
Lund, Sweden
5:00 p.m. **Update on gene therapy**
Jeffrey H. Kordower
Chicago, IL, USA
5:30 p.m. **Discussion**

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe which conclusions can be drawn from clinical trials with fetal nigral and other dopaminergic cell types; 2. Discuss what will be needed from stem cell-based therapies in order to work better than current fetal cell-based approaches; 3. Describe how various gene therapeutic approaches might be applied to Parkinson’s disease patients in order to counteract symptom progression and induce functional recovery.

2605 Pathology and pathogenesis of Parkinson’s disease
Location: Napoleon B, Third Floor, Sheraton
Chair: Etienne C. Hirsch
Paris, France
4:00 p.m. **New concepts in pathology of Parkinson’s disease**
Glenda M. Halliday
Randwick, Australia
4:30 p.m. **Pathogenesis**
Anthony H.V. Schapira
London, United Kingdom
5:00 p.m. **Mechanisms of cell death**
Etienne C. Hirsch
Paris, France
5:30 p.m. **Discussion**

Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the etiology of Parkinson’s disease including genetic and environmental causes of the disease; 2. Describe the distribution of the lesion in Parkinson’s disease including dopaminergic and non-dopaminergic neurons; 3. Describe the molecular and cellular changes associated with the neuronal death in Parkinson’s disease including altered protein processing, mitochondrial dysfunction, oxidative stress and inflammatory processes.

2606 Balance and gait in Parkinson’s disease
Location: Napoleon C, Third Floor, Sheraton
Chair: Nir Giladi
Tel Aviv, Israel
4:00 p.m. **Clinical aspects**
Nir Giladi
Tel Aviv, Israel
4:30 p.m. **Physiology and pathophysiology of balance and gait**
Fay B. Horak
Beaverton, OR, USA
5:00 p.m. **Treatment**
Robert Iansek
Cheltenham, Australia
5:30 p.m. **Discussion**

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the different gait disorders, their clinical characteristics and the relations to postural control; 2. Discuss the different assessment tools for locomotion gait disorders and disturbances of postural control; 3. Indicate the possible therapeutic interventional options for the improvement of posture and gait.

Evaluations

Please take time to complete the evaluation form provided for each session you attend. Your input and comments are essential in planning future educational programs for MDS.

When completed, evaluations may be returned to your meeting room attendants, the evaluation drop boxes, the MDS Registration Desk or the CME Desk.
Scientific Program ~ Sunday

2607 Drug induced Movement Disorders
Location: Balcony K, Fourth Floor, Marriott
Chair: Kapil D. Sethi
Augusta, GA, USA
4:00 p.m. How atypical antipsychotics spare motor side effects-the critical role of the D2 receptor
Shitij Kapur
Toronto, Canada
4:30 p.m. Status of tardive dyskinesias in 2005
Stewart A. Factor
Albany, NY, USA
5:00 p.m. Other drug induced Movement Disorders (neuroleptic and nonneuroleptic)
Kapil D. Sethi
Augusta, GA, USA
5:30 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify Movement Disorders due to dopaminergic blocking agents; 2. Identify Movement Disorders due to drugs like anti-convulsants and anti-depressants; 3. Effectively manage patients with drug induced Movement Disorders.

Video Sessions
A ticket is required for admission to these smaller, interactive sessions. Attendance for Video Sessions is limited. There are no additional fees for tickets. Delegates that do not have tickets to these sessions, but would like to attend, are asked to check at the On-Site Registration Desk for ticket availability.

6:45 p.m. to 8:15 p.m.
2801 DBS case studies (Session A)
Location: Carondelet Room, Third Floor, Marriott
Boulos-Paul Bejjani
Byblos, Lebanon
Paul Krack
Grenoble, France
Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the most appropriate DBS target for different Movement Disorders; 2. Explain the limitations of the technique (Which signs are resistant? What are the problems in follow-up?); 3. Identify the best candidates for surgery.

2802 DBS case studies (Session B)
Location: Balcony K, Fourth Floor, Marriott
Jean-luc Houeto
Poitiers, France
Pierre Pollak
Grenoble, France
Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify eligible patients for DBS therapy; 2. Discuss what we can expect from DBS in the surgical treatment of tremors, Parkinson's disease and dystonia; 3. List and understand the problems that can arise with DBS and how to approach solving them.

2803 Psychogenic Movement Disorders
Location: Napoleon C, Third Floor, Sheraton
John G.L. Morris
Sydney, Australia
Anthony E. Lang
Toronto, Canada
Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify the key clinical features of psychogenic Movement Disorders; 2. Recognize the difference between psychogenic Movement Disorders and Movement Disorders associated with organic disease of the nervous system; 3. Define some of the underlying mechanisms of psychogenic Movement Disorders.

2804 Paroxysmal Movement Disorders
Location: Napoleon A, Third Floor, Sheraton
Kailash P. Bhatia
London, United Kingdom
Kapil D. Sethi
Augusta, GA, USA
Session Objectives: At the conclusion of this session, participants should be able to: 1. Recognize primary paroxysmal dyskinesias; 2. Differentiate primary from secondary paroxysmal dyskinesias; 3. Describe management of paroxysmal dyskinesias.

2805 Motor disorders and sleep
Location: Napoleon B, Third Floor, Sheraton
Claudia M. Trenkwalder
Kassel, Germany
Birgit Högl
Innsbruck, Austria
Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify the most common motor phenomenons in sleep i.e. sleep talking, sleep walking, bruxism, and tremor, observed in Parkinson's disease and various Movement Disorders; 2. Describe the phenomenology of REM sleep behavior disorder in Parkinson syndromes and explain the major pathophysiological hypothesis; 3. Recognize the typical motor pattern of the restless legs syndrome with periodic limb movements in sleep and wakefulness.

2806 Myoclonus/startle/other jerks
Location: Balcony L, Fourth Floor, Marriott
Philip D. Thompson
North Terrace, Adelaide, Australia
Hiroshi Shibasaki
Bethesda, MD, USA

2807 Dystonia
Location: Napoleon D, Third Floor, Sheraton
Marie Vidaillhet
Paris, France
Alberto Albanese
Milano, Italy
Session Objectives: At the conclusion of this session, participants should be able to: 1. Recognize the fundamental clinical features of the Movement Disorder and apply skilled methodology in the clinical evaluation of patients with dystonia; 2. Recognize the different forms of dystonia based on current classification criteria, particularly distinguishing primary and secondary cases; 3. Identify the appropriate laboratory examinations to perform in each case and rank them by appropriateness.
Introducing ALLERGAN NEUROSCIENCES

Visit the Allergan Neurosciences booth for the latest information on BOTOX®

©2004 Allergan, Inc., Irvine, CA 92612 * Marks owned by Allergan, Inc. www.botox.com 4942430
Scientific Program - Monday

Monday, March 7

Plenary Session

Admission to this session is by delegate name badge. No ticket is required for admission to Plenary Sessions.

8:30 a.m. to 12:30 p.m.

3101 Hot topics
Location: Acadia Room, Third Floor, Marriott
Overflow: Carondelet Room, Third Floor, Marriott

Chairs: M. Flint Beal
New York, NY, USA
Eldad Melamed
Petah Tiqva, Israel

8:30 a.m. Update on basal ganglia - organization and physiology
Thomas Wichmann
Atlanta, GA, USA

9:00 a.m. Genetic and environmental factors in the etiology of Parkinson's disease
Christine Klein
Luebeck, Germany

9:30 a.m. Protein dysfunction and neurodegeneration
C. Warren Olanow
New York, NY, USA

10:00 a.m. Break

10:30 a.m. Neuroimaging of the basal ganglia
A. Jon Stoessl
Vancouver, Canada

11:00 a.m. Clinical trials: The latest
Werner Poewe
Innsbruck, Austria

11:30 a.m. Surgical interventions
Andres M. Lozano
Toronto, Canada

12:00 p.m. Therapeutics pipeline
Peter Jenner
London, United Kingdom

Abstract Session

Admission to this session is by delegate name badge. No ticket is required for admission to Poster Sessions or Platform Presentations.

12:30 p.m. to 2:15 p.m.

3501 Poster Session 2
Location: Mardi Gras Ballroom, Third Floor, Marriott
Poster Viewing: 8:30 a.m. to 5:00 p.m.
Authors Present: 12:30 p.m. to 2:15 p.m.
Abstracts: 188-383

Plenary Session

Admission to this session is by delegate name badge. No ticket is required for admission to Plenary Sessions.

2:15 p.m. to 5:15 p.m.

3502 Controversies
Location: Acadia Room, Third Floor, Marriott
Overflow: Carondelet Room, Third Floor, Marriott

Chairs: Oscar S. Gershanik
Buenos Aires, Argentina
Eldad Melamed
Petah Tiqva, Israel

2:15 p.m. Trophic factor delivery using pumps and catheters is not viable as a treatment for Parkinson’s disease?
Clive N. Svendsen
Madison, WI, USA
John G. Nutt
Portland, OR, USA

2:45 p.m. Stem cells are the future for the treatment of Parkinson’s disease?
José A. Oseso
Pamplona, Spain
Speaker to be announced

3:15 p.m. Parkinson’s disease should be treated at the time of diagnosis?
Yves Agid
Paris, France
Matthew B. Stern
Philadelphia, PA, USA

3:45 p.m. Post traumatic dystonia is a psychogenic Movement Disorder?
Joseph Jankovic
Houston, TX, USA
Anthony E. Lang
Toronto, Canada

4:15 p.m. Double-blind placebo controlled trials are required to establish the efficacy of surgical trials for Movement Disorders?
Alim L. Benabid
Grenoble, France
C. Warren Olanow
New York, NY, USA

4:45 p.m. Microrecording is essential for the best outcomes of functional neurosurgery?
Marwan I. Hariz
London, United Kingdom
Jerrold Lee Vitek
Cleveland, OH, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify controversial issues related to diagnosis and treatment of Parkinson’s disease and other Movement Disorders; 2. Identify the pros and cons of different treatment strategies presently being discussed for the management of Parkinson’s disease as well as methodological approaches used in the surgical treatment of Parkinson’s disease and the validity of current methods of evaluation of the outcome of such procedures; 3. Define whether post-traumatic dystonia is a psychogenic disorder or not.
Scientific Program ~ Monday

Skills Workshops

* A ticket is required for admission to these smaller, interactive sessions. Attendance for Skills Workshops is limited. There are no additional fees for tickets. Delegates that do not have tickets to these sessions, but would like to attend, are asked to check at the On-Site Registration Desk for ticket availability.

5:30 p.m. to 7:30 p.m.

3701 Botulinum toxin (Session A)
Location: Napoleon A, Third Floor, Sheraton

Allison Brashear
Indianapolis, IN, USA
Austen Peter Moore
Liverpool, United Kingdom

Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the indications, appropriate patient selection, dosing and technique for using botulinum toxin in the treatment of Movement Disorders and spasticity; 2. Understand the differences of each serotype of botulinum toxin and strategies for choosing between them; 3. Discuss how to assess the role of botulinum toxin in new indications, such as the treatment of pain and headache.

3702 Botulinum toxin (Session B)
Location: Balcony I, Fourth Floor, Marriott

Francisco Cardoso
Belo Horizonte MG, Brazil
Charles H. Adler
Scottsdale, AZ, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the mechanism of action of botulinum toxin and differences between botulinum toxin type A and B; 2. Recognize the different disorders for which botulinum toxin is indicated; 3. Explain how to inject botulinum toxin for different disorders and the dosing needed to start treatment.

3703 Programming for DBS (Session A)
Location: Napoleon B1, Third Floor, Sheraton

Jens Volkmann
Kiel, Germany
Michele Tagliati
New York, NY, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Understand and apply the principals of deep brain stimulation programming for each basal ganglia target; 2. Perform a systematic initial programming session and manage patients at follow-up visits; 3. Evaluate common problems and trouble shooting strategies.

3704 Programming for DBS (Session B)
Location: Balcony L, Fourth Floor, Marriott

Jean-Michel Gracies
New York, NY, USA
Elena Moro
Toronto, Canada

Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify the patients who are candidates for the DBS of the subthalamic nucleus, quorus pallidus and thalamus; 2. Discuss and apply the principles of DBS programming and of management of patients with DBS; 3. Identify problems and apply troubleshooting strategies associated with DBS treatment.

3705 Functional surgery targeting
Location: Napoleon C1, Third Floor, Sheraton

Maria Rodriguez-Oroz
Pamplona, Spain
Philip Starr
San Francisco, CA, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the major techniques used to localize the thalamus, global pallidus and subthalamic nucleus for placement of lesions or stimulators for the treatment of Movement Disorders; 2. Recognize patterns of single unit discharge encountered during microelectrode recording in the subthalamic nucleus and global pallidus; 3. Identify MRI based stereotactic targeting of basal ganglia nuclei.

3706 Clinical trial design
Location: Napoleon D, Third Floor, Sheraton

Karl D. Kieburtz
Rochester, NY, USA
Olivier Rascol
Toulouse, France

3707 Electrophysiological study of Movement Disorder patients
Location: La Galerie 6, Second Floor, Marriott

Robert Chen
Toronto, Canada
John C. Rothwell
London, United Kingdom

Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify the type of patients in whom electrophysiological study of Movement Disorders patients may be helpful in establishing the diagnosis or to further understand the pathophysiology; 2. Describe the electrophysiological studies commonly used, the necessary equipment and the limitations of the tests; 3. Discuss the physiological findings in several Movement Disorders including tremor, psychogenic Movement Disorders and myoclonus.

3708 Writing and publishing manuscripts
Location: Napoleon C3, Third Floor, Sheraton

Günther Deuschl
Kiel, Germany
Christopher G. Goetz
Chicago, IL, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Explain the editorial process from manuscript submission, through review and eventual publishing; 2. Understand the criteria used by editors in evaluating manuscripts and selecting them for acceptance in scientific journals, using Movement Disorders as a prototype; 3. List advised steps for authors to follow in developing a manuscript from concept through full completion; 4. Discuss strategies to enhance manuscript quality and presentation.
Scientific Program ~ Monday/Tuesday

3709 How to get a grant
Location: Napolean B2, Third Floor, Sheraton
Katrina Gwinn-Hardy
Bethesda, MD, USA
Jeffrey H. Kordower
Chicago, IL, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Understand writing strategies for each section of the application; 2. Understand the infrastructure of NIH grant funding (e.g. composition of a study section, job of council, who are SRA, program officers, etc.); 3. Gain an overview of NIH granting mechanisms; 4. Become acquainted with common pitfalls of NIH grant writing; 5. Be made aware of web based resources for grant applications; 6. Be made aware of strategies for funding at NIH.

3710 Animal models
Location: Napoleon C2, Third Floor, Sheraton
Kevin S. McNaught
New York, NY, USA
Serge Przedborski
New York, NY, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Be familiarized with experimental models of Parkinson’s disease and to discuss their strengths and weaknesses; 2. Provide an overview of the current understanding of the mechanism of cell death in Parkinson’s disease using these animal models; 3. Discuss how those molecular targets could be used to devise neuroprotective strategies for Parkinson’s disease.

3712 Digitizing and editing your videotapes and creating a digital videotape library
Location: Balcony M, Fourth Floor, Marriott
Gregory F. Molnar
Toronto, Canada
Mandar Jog
London, Canada

Session Objectives: At the conclusion of this session, participants should be able to: 1. Identify the necessary computer hardware, software and connections to digitize videotapes; 2. Describe the basic editing steps for video files and how to create a digital video library; 3. Explain the most effective way to incorporate video clips into PowerPoint presentations and how to save them for transport to other computers.

3713 The role of the Movement Disorders nurse
Location: Balcony N, Fourth Floor, Marriott
Lisa A. Johnston
Toronto, Canada
Carol Brown Moskowitz
New York, NY, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the expanded scope of practice for nurses in Movement Disorders; 2. Discuss the evolving role of the Movement Disorders nurse with deep brain stimulation (DBS), recognize the spectrum of care for the patient undergoing DBS and their family to help achieve a realistic outcome for DBS; 3. Discuss the implications of genetic testing on the Movement Disorder patient and the role of the nurse in counseling, define useful explanatory models to use as families consider genetic testing.

Tuesday, March 8
Plenary Sessions
Admission to these sessions is by delegate name badge. No ticket is required for admission to Plenary Sessions.
8:30 a.m. to 9:30 a.m.
4101 Dystonia and apraxia
Location: Acadia Room, Third Floor, Marriott
Overflow: Carondelet Room, Third Floor, Marriott
Chair: Reiner Benecke
Rostock, Germany
8:30 a.m. What’s hot in dystonia
Stanley Fahn
New York, NY, USA
9:00 a.m. Update on apraxia
Mark Hallett
Bethesda, MD, USA

Session Objectives: At the conclusion of this session, participants should be able to: 1. Explain the pathophysiology and neurobiology of the various manifestations of dystonia and the basics of genotype-phenotype interactions; 2. Explain the pathophysiology and clinical manifestations of apraxia in neurovascular and degenerative neurological diseases.

9:30 a.m. to 10:00 a.m.
4102 Stanley Fahn Lecture: Is the brain pathology in sporadic Parkinson’s disease uniform?
Location: Acadia Room, Third Floor, Marriott
Overflow: Carondelet Room, Third Floor, Marriott
Heiko Braak
Frankfurt, Germany

Evaluations
Please take time to complete the evaluation form provided for each session you attend. Your input and comments are essential in planning future educational programs for MDS.
When completed, evaluations may be returned to your meeting room attendants, the evaluation drop boxes, the MDS Registration Desk or the CME Desk.
Parallel Sessions
A ticket is required for admission to these smaller, interactive sessions. Attendance for Parallel Sessions is limited. There are no additional fees for tickets. Delegates that do not have tickets to these sessions, but would like to attend, are asked to check at the On-Site Registration Desk for ticket availability.

10:30 a.m. to 12:45 p.m.

4201 Psychiatric aspects of Parkinson's disease
Location: Carondelet Room, Third Floor, Marriott
Chair: Christopher G. Goetz
Chicago, IL, USA
10:30 a.m. **Psychosis**
Christopher G. Goetz
Chicago, IL, USA
11:05 a.m. **Discussion**
11:15 a.m. **Mood - depression**
Valerie Voon
Toronto, Canada
11:50 a.m. **Discussion**
12:00 p.m. **Other behavior - impulsivity, addiction**
(hedonistic homeostatic dysregulation)
Andrew H. Evans
London, United Kingdom
12:35 p.m. **Discussion**

Session Objectives: At the conclusion of this session, participants should be able to: 1. Explain the major clinical elements of psychosis, depression, obsessive and impulsive behaviors seen in Parkinson's disease; 2. Understand the anatomical and biochemical bases of these disorders in the context of Parkinson's disease; 3. List the features of each behavioral disorder that are distinctive in the context of Parkinson's disease compared to the same disorder occurring without Parkinson's disease; 4. Discuss current therapies for each behavioral disorder.

4202 Non-dopaminergic features of Parkinson's disease
Location: Napoleon A, Third Floor, Sheraton
Chair: Olivier Rascol
Toulouse, France
10:30 a.m. **Sleep disorders**
Bradley F. Boeve
Rochester, MN, USA
11:00 a.m. **Autonomic dysfunction**
Horacio Kaufmann
New York, NY, USA
11:30 a.m. **Pain**
Olivier Rascol
Toulouse, France
12:00 p.m. **Discussion**

4203 Multiple system atrophy
Location: Napoleon B, Third Floor, Sheraton
Chair: Gregor K. Wenning
Innsbruck, Austria
10:30 a.m. **Clinical overview - including epidemiology, phenomenology, diagnosis (including imaging)**
Carlo Colosimo
Rome, Italy
11:00 a.m. **Etiology/pathogenesis**
Gregor K. Wenning
Innsbruck, Austria
11:30 a.m. **Therapy - current and experimental**
Niall P. Quinn
London, United Kingdom
12:00 p.m. **Discussion**

Session Objectives: At the conclusion of this session, participants should be able to: 1. Discuss the clinical presentation and useful diagnostic tests in patients with MSA; 2. Discuss the etiopathogenesis of MSA; 3. List practical and experimental management strategies in MSA.

4204 Primary dystonias
Location: Borgne Room, Third Floor, Sheraton
Chair: Xandra Breakefield
Charlestown, MA, USA
10:30 a.m. **Clinical overview - including epidemiology, phenomenology, diagnosis (including imaging)**
Cynthia L. Comella
Chicago, IL, USA
11:00 a.m. **Etiology/pathogenesis**
Xandra Breakefield
Charlestown, MA, USA
11:30 a.m. **Therapy - current and experimental**
Kailash P. Bhatia
London, United Kingdom
12:00 p.m. **Discussion**
Scientific Program ~ Tuesday

4205 Huntington's disease
Location: Balcony L, Fourth Floor, Marriott
Chair: Anne B. Young
Boston, MA, USA
10:30 a.m. Clinical overview - including epidemiology, phenomenology, diagnosis (including imaging)
Kathleen M. Shannon
Chicago, IL, USA
11:00 a.m. Etiology/pathogenesis
M. Flint Beal
New York, NY, USA
11:30 a.m. Therapy - current and experimental
Anne B. Young
Boston, MA, USA
12:00 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the pathophysiology and neurobiology of Huntington's disease; 2. Discuss the diagnostic approaches and tools available for Huntington's disease; 3. Discuss pharmacological and non-pharmacological treatment options available for Huntington's disease.

4206 Physiology and the basal ganglia model
Location: Napoleon D, Third Floor, Sheraton
Chair: Alan Crossman
Manchester, United Kingdom
10:30 a.m. Anatomy
Yoland Smith
Atlanta, GA, USA
11:00 a.m. Physiology
Jerrold Lee Vitek
Cleveland, OH, USA
11:30 a.m. Pharmacology
Alan Crossman
Manchester, United Kingdom
12:00 p.m. Discussion

4207 Update on alphasynuclein and the Lewy body
Location: Napoleon C, Third Floor, Sheraton
Chair: Katrina Gwinn-Hardy
Bethesda, MD, USA
10:30 a.m. Clinical aspects of the familial synucleinopathies
Katrina Gwinn-Hardy
Bethesda, MD, USA
11:00 a.m. Update on alphasynuclein and its role in disease
Andrew Singleton
Bethesda, MD, USA
11:30 a.m. Lewy bodies
Kevin S. McNaught
New York, NY, USA
12:00 p.m. Discussion
Session Objectives: At the conclusion of this session, participants should be able to: 1. Recognize some common features of the synucleinopathies clinically, pathologically; 2. Discuss clinical features that are not distinctive for the synucleinopathies when compared to other genetic causes of parkinsonism; 3. Discuss synucleinopathies in the context of other neurodegenerative disorders, and consider the current understanding genetics has contributed to neurodegenerative diseases.

Abstract Sessions
Admission to these sessions is by delegate name badge. No ticket is required for admission to Poster Sessions or Platform Presentations.

12:45 p.m. to 2:30 p.m.
4501 Poster Session 3
Location: Mardi Gras Ballroom, Third Floor, Marriott
Poster Viewing: 8:30 a.m. to 5:00 p.m.
Authors Present: 12:45 p.m. to 2:30 p.m.
Abstracts: 384-592
2:30 p.m. to 3:30 p.m.
4502 Highlights of poster sessions
Location: Acadia Room, Third Floor, Marriott
Overflow: Carondelet, Third Floor, Marriott
Clinical Highlights
Chairs: Mark A. Stacy
Durham, NC, USA
Joseph Jankovic
Houston, TX, USA
Scientific Highlights
Chairs: Mark Cookson
Bethesda, MD, USA
Etienne C. Hirsch
Paris, France

Evaluations
Please take time to complete the evaluation form provided for each session you attend. Your input and comments are essential in planning future educational programs for MDS.

When completed, evaluations may be returned to your meeting room attendants, the evaluation drop boxes, the MDS Registration Desk or the CME Desk.
Scientific Program ~ Tuesday

Parallel Sessions

A ticket is required for admission to these smaller, interactive sessions. Attendance for Parallel Sessions is limited. There are no additional fees for tickets. Delegates that do not have tickets to these sessions, but would like to attend, are asked to check at the On-Site Registration Desk for ticket availability.

4:00 p.m. to 6:15 p.m.

4601 Cognitive dysfunction and dementia in Parkinson’s disease
Location: Carondelet Room, Third Floor, Marriott
Chair: Bruno Dubois
Paris, France
4:00 p.m. Definitions and clinical features
Bruno Dubois
Paris, France
4:30 p.m. Pathogenesis/neuroanatomy/pathology
Dennis Dickson
Jacksonville, FL, USA
5:00 p.m. Management
David John Burn
Newcastle Upon Tyne, United Kingdom
5:30 p.m. Discussion

4602 PSP/CBD
Location: Napoleon A, Third Floor, Sheraton
Chair: Irene Litvan
Louisville, KY, USA
4:00 p.m. Clinical overview - including epidemiology, phenomenology, diagnosis (including imaging)
David R. Williams
Haggerston, United Kingdom
4:30 p.m. Etiology/pathogenesis
Irene Litvan
Louisville, KY, USA
5:00 p.m. Therapy - current and experimental
Peter Paul Pramstaller
Bolzano, Italy
5:30 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe current epidemiologic and genetic findings; 2. Identify major risk factors; 3. Discuss currently hypothesized etiopathogenic mechanisms.

4603 Spinocerebellar ataxias and other ataxias
Location: Napoleon B, Third Floor, Sheraton
Chair: Thomas Klockgether
Bonn, Germany
4:00 p.m. Clinical overview - including epidemiology, phenomenology, diagnosis (including imaging)
Alessandro Filla
Napoli, Italy
4:30 p.m. Etiology/pathogenesis
Alexis Brice
Paris, France
5:00 p.m. Therapy - current and experimental
Thomas Klockgether
Bonn, Germany
5:30 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe the clinical spectrum and epidemiology of spinocerebellar ataxias; 2. Discuss the genetic and molecular basis of spinocerebellar ataxias; 3. Describe the current treatment approaches in spinocerebellar ataxias.

4604 Adult-onset focal dystonia
Location: Borgne Room, Third Floor, Sheraton
Chair: Alfredo Berardelli
Rome, Italy
4:00 p.m. Clinical overview - including epidemiology, phenomenology, diagnosis (including imaging)
Steven Frucht
New York, NY, USA
4:30 p.m. Etiology/pathogenesis/pathophysiology
Alfredo Berardelli
Rome, Italy
5:00 p.m. Therapy - current and experimental
Thomas T. Warner
London, United Kingdom
5:30 p.m. Discussion
Scientific Program ~ Tuesday

4605 Epidemiology
Location: Napoleon C, Third Floor, Sheraton
Chair: Caroline M. Tanner
Sunnyvale, CA, USA

4:00 p.m. Epidemiological methods
Caroline M. Tanner
Sunnyvale, CA, USA

4:30 p.m. Epidemiologic studies in Parkinson’s disease and parkinsonisms
Sigurlaug Sveinbjornsdottir
Reykjavik, Iceland

5:00 p.m. Epidemiologic studies in dystonia and other Movement Disorders
Caroline M. Tanner
Sunnyvale, CA, USA
Giovanni Defazio
Bari, Italy

5:30 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Describe basic epidemiologic approaches to studying Movement Disorders; 2. Discuss the epidemiology of Parkinson’s disease and parkinsonism; 3. Discuss the epidemiology of dystonia.

4606 Hereditary and non-hereditary choreas
Location: Balcony L, Fourth Floor, Marriott
Chair: Ruth Walker
Bronx, NY, USA

4:00 p.m. Pathophysiology of choreas
Jonathan M. Brotchie
Toronto, Canada

4:30 p.m. Neurocanthocytosis and McLeod’s syndrome
Adrian Danek
Munich, Germany

5:00 p.m. Huntington’s disease-like syndromes, benign hereditary chorea and other choreas
Ruth Walker
Bronx, NY, USA

5:30 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Define, identify and discuss physiological and pathological types of motor stereotypies in children and adults; 2. Discuss pharmacological and non-pharmacological treatment options for motor stereotypies; 3. Discuss the pathophysiology and neurobiology of motor stereotypy disorders.

4607 Motor stereotypies: bridging clinical practice and basic science
Location: Napoleon D, Third Floor, Sheraton
Chair: Harvey S. Singer
Baltimore, MD, USA

4:00 p.m. Stereotypies in childhood
Harvey S. Singer
Baltimore, MD, USA

4:30 p.m. Stereotypies in adulthood
Joseph Jankovic
Houston, TX, USA

5:00 p.m. Neural circuits involved in stereotypies
Ann M. Graybiel
Cambridge, MA, USA

5:30 p.m. Discussion

Session Objectives: At the conclusion of this session, participants should be able to: 1. Define, identify and discuss physiological and pathological types of motor stereotypies in children and adults; 2. Discuss pharmacological and non-pharmacological treatment options for motor stereotypies; 3. Discuss the pathophysiology and neurobiology of motor stereotypy disorders.

Plenary Session
Admission to this session is by delegate name badge. No ticket is required for admission to Plenary Sessions.

6:30 p.m. to 8:30 p.m.
4901 Lessons my patients taught me
Location: Acadia Room, Third Floor, Marriott
Overflow: Carondelet Room, Third Floor, Marriott
Chair: Werner Poewe
Innsbruck, Austria
Anthony E. Lang
Toronto, Canada
Christopher G. Goetz
Chicago, IL, USA
Eduardo Tolosa
Barcelona, Spain
Andrew J. Lees
London, United Kingdom
John G.L. Morris
Sydney, Australia
AN UNRELENTING PURSUIT FOR THE ANSWER TO PARKINSON’S.

FOR NOW AND THE FUTURE.

Valeant is working every day to meet unmet medical needs for the treatment of Parkinson’s disease.

VALEANT
www.valeant.com NYSE: VRX

Come visit BOOTH #114 for more information.

Copyright © Valeant Pharmaceuticals International 2004. All Rights Reserved. Valeant and the V logo design are trademarks of Valeant Pharmaceuticals International.
Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>City, Country</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles H. Adler</td>
<td>Scottsdale, AZ, USA</td>
<td>2002, 3702</td>
<td>9</td>
</tr>
<tr>
<td>Yves Agid</td>
<td>Paris, France</td>
<td>1901, 3502</td>
<td>9</td>
</tr>
<tr>
<td>Alberto Albanese</td>
<td>Milano, Italy</td>
<td>2807</td>
<td>9</td>
</tr>
<tr>
<td>Richard P. Allen</td>
<td>Arnold, MD, USA</td>
<td>1902</td>
<td>9</td>
</tr>
<tr>
<td>M. Flint Beal</td>
<td>New York, NY, USA</td>
<td>3101, 4205</td>
<td>9</td>
</tr>
<tr>
<td>Yves Agid</td>
<td>Paris, France</td>
<td>1901, 3502</td>
<td>9</td>
</tr>
<tr>
<td>Alberto Albanese</td>
<td>Milano, Italy</td>
<td>2807</td>
<td>9</td>
</tr>
<tr>
<td>Richard P. Allen</td>
<td>Arnold, MD, USA</td>
<td>1902</td>
<td>9</td>
</tr>
<tr>
<td>M. Flint Beal</td>
<td>New York, NY, USA</td>
<td>3101, 4205</td>
<td>9</td>
</tr>
</tbody>
</table>
Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>City, Country</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter A. LeWitt</td>
<td>Southfield, MI, USA</td>
<td>1001, 1401</td>
</tr>
<tr>
<td>David G. Lichter</td>
<td>Buffalo, NY, USA</td>
<td>2202</td>
</tr>
<tr>
<td>Olle Lindvall</td>
<td>Lund, Sweden</td>
<td>2604</td>
</tr>
<tr>
<td>Irene Litvan</td>
<td>Louisville, KY, USA</td>
<td>4602</td>
</tr>
<tr>
<td>Elan D. Louis</td>
<td>New York, NY, USA</td>
<td>2603</td>
</tr>
<tr>
<td>Andres M. Lozano</td>
<td>Toronto, Canada</td>
<td>3101</td>
</tr>
<tr>
<td>Ian Mackenzie</td>
<td>Vancouver, Canada</td>
<td>2203</td>
</tr>
<tr>
<td>Kenneth Marek</td>
<td>New Haven, CT, USA</td>
<td>1601, 2201</td>
</tr>
<tr>
<td>Kevin S. McNaught</td>
<td>New York, NY, USA</td>
<td>3710, 4207</td>
</tr>
<tr>
<td>Eldad Melamed</td>
<td>Petah Tiqva, Israel</td>
<td>3101, 3502</td>
</tr>
<tr>
<td>Jonathan Mink</td>
<td>Rochester, NY, USA</td>
<td>2602</td>
</tr>
<tr>
<td>Yoshikuni Mizuno</td>
<td>Tokyo, Japan</td>
<td>1601, 2101</td>
</tr>
<tr>
<td>Gregory F. Molnar</td>
<td>Toronto, Canada</td>
<td>3712</td>
</tr>
<tr>
<td>Austen Peter Moore</td>
<td>Liverpool, United Kingdom</td>
<td>3701</td>
</tr>
<tr>
<td>Elena Moro</td>
<td>Toronto, Canada</td>
<td>3704</td>
</tr>
<tr>
<td>John G. Nutt</td>
<td>Portland, OR, USA</td>
<td>3502</td>
</tr>
<tr>
<td>José A. Obeso</td>
<td>Pamplona, Spain</td>
<td>1002, 2601, 3502</td>
</tr>
<tr>
<td>C. Warren Olanow</td>
<td>New York, NY, USA</td>
<td>1402, 3101, 3502</td>
</tr>
<tr>
<td>William Ondo</td>
<td>Houston, TX, USA</td>
<td>1902</td>
</tr>
<tr>
<td>Rajesh Pahwa</td>
<td>Kansas City, KS, USA</td>
<td>2603</td>
</tr>
<tr>
<td>Werner Poewe</td>
<td>Innsbruck, Austria</td>
<td>1402, 3101, 4901</td>
</tr>
<tr>
<td>Pierre Pollak</td>
<td>Grenoble, France</td>
<td>2204, 2802</td>
</tr>
<tr>
<td>Peter Paul Pramstaller</td>
<td>Bolzano, Italy</td>
<td>4602</td>
</tr>
<tr>
<td>Serge Przedborski</td>
<td>New York, NY, USA</td>
<td>3710</td>
</tr>
<tr>
<td>Angelo Quaratarone</td>
<td>Messina, Italy</td>
<td>2207</td>
</tr>
<tr>
<td>Niall P. Quinn</td>
<td>London, United Kingdom</td>
<td>4203</td>
</tr>
<tr>
<td>Olivier Rascol</td>
<td>Toulouse, France</td>
<td>3706, 4202</td>
</tr>
<tr>
<td>Maria C. Rodriguez-Oroz</td>
<td>Pamplona, Spain</td>
<td>3705</td>
</tr>
<tr>
<td>John C. Rothwell</td>
<td>London, United Kingdom</td>
<td>2207, 3707</td>
</tr>
<tr>
<td>David Rye</td>
<td>Atlanta, GA, USA</td>
<td>1902, 2206</td>
</tr>
<tr>
<td>Terence Sanger</td>
<td>Stanford, CA, USA</td>
<td>2602</td>
</tr>
<tr>
<td>Anthony H.V. Schapira</td>
<td>London, United Kingdom</td>
<td>1402, 2605</td>
</tr>
<tr>
<td>Anette Schrag</td>
<td>London, United Kingdom</td>
<td>2202</td>
</tr>
<tr>
<td>Klaus Seppi</td>
<td>Innsbruck, Austria</td>
<td>2205</td>
</tr>
<tr>
<td>Kapil D. Sethi</td>
<td>Augusta, GA, USA</td>
<td>1001, 2607, 2804</td>
</tr>
<tr>
<td>Kathleen M. Shannon</td>
<td>Chicago, IL, USA</td>
<td>4205</td>
</tr>
<tr>
<td>Hiroshi Shibasaki</td>
<td>Bethesda, MD, USA</td>
<td>2806</td>
</tr>
<tr>
<td>Harvey S. Singer</td>
<td>Baltimore, MD, USA</td>
<td>2202, 4607</td>
</tr>
<tr>
<td>Andrew B. Singleton</td>
<td>Bethesda, MD, USA</td>
<td>4207</td>
</tr>
<tr>
<td>Yoland Smith</td>
<td>Atlanta, GA, USA</td>
<td>4206</td>
</tr>
<tr>
<td>Mark A. Stacy</td>
<td>Durham, NC, USA</td>
<td>1401, 4502</td>
</tr>
<tr>
<td>Philip A. Starr</td>
<td>San Francisco, CA, USA</td>
<td>3705</td>
</tr>
<tr>
<td>Matthew B. Stern</td>
<td>Philadelphia, PA, USA</td>
<td>1601, 3502</td>
</tr>
<tr>
<td>Fabrizio Stocchi</td>
<td>Roma, Italy</td>
<td>1602</td>
</tr>
<tr>
<td>A. Jon Stoessl</td>
<td>Vancouver, Canada</td>
<td>3101</td>
</tr>
<tr>
<td>Sigurlaug Sveinbjornsdottir</td>
<td>Reykjavik, Iceland</td>
<td>4605</td>
</tr>
<tr>
<td>Clive N. Svendsen</td>
<td>Madison, WI, USA</td>
<td>3502</td>
</tr>
<tr>
<td>Michele Tagliati</td>
<td>New York, NY, USA</td>
<td>3703</td>
</tr>
<tr>
<td>Caroline M. Tanner</td>
<td>Sunnyvale, CA, USA</td>
<td>4605</td>
</tr>
<tr>
<td>Philip D. Thompson</td>
<td>North Terrace, Adelaide, Australia</td>
<td>2806</td>
</tr>
<tr>
<td>Eduardo Tolosa</td>
<td>Barcelona, Spain</td>
<td>2201, 4901</td>
</tr>
<tr>
<td>Claudia M. Trenkwalder</td>
<td>Kassel, Germany</td>
<td>1902, 2206, 2805</td>
</tr>
<tr>
<td>Marie Vidalhbet</td>
<td>Paris, France</td>
<td>2204, 2807</td>
</tr>
<tr>
<td>Jerrold Lee Vitek</td>
<td>Cleveland, OH, USA</td>
<td>3502, 4206</td>
</tr>
<tr>
<td>Jens Volkman</td>
<td>Kiel, Germany</td>
<td>2204, 3703</td>
</tr>
<tr>
<td>Valerie Voon</td>
<td>Bethesda, MD, USA</td>
<td>4201</td>
</tr>
<tr>
<td>Ruth H. Walker</td>
<td>Bronx, NY, USA</td>
<td>4606</td>
</tr>
<tr>
<td>Thomas T. Warner</td>
<td>London, United Kingdom</td>
<td>4604</td>
</tr>
<tr>
<td>Cheryl H. Waters</td>
<td>New York, NY, USA</td>
<td>1001</td>
</tr>
<tr>
<td>Ray L. Watts</td>
<td>Birmingham, AL, USA</td>
<td>1901</td>
</tr>
<tr>
<td>Gregor K. Wenning</td>
<td>Innsbruck, Austria</td>
<td>4203</td>
</tr>
<tr>
<td>Thomas Wichmann</td>
<td>Atlanta, GA, USA</td>
<td>3101</td>
</tr>
<tr>
<td>David R. Williams</td>
<td>Haggerston, United Kingdom</td>
<td>4602</td>
</tr>
<tr>
<td>Zhigniew K. Wszelek</td>
<td>Jacksonville, FL, USA</td>
<td>2203</td>
</tr>
<tr>
<td>Anne B. Young</td>
<td>Boston, MA, USA</td>
<td>4205</td>
</tr>
</tbody>
</table>
Optimizing levodopa delivery

Enhance the benefits of levodopa therapy

- Provide increased “on” time and decreased “off” time¹
- Demonstrate rapid and significant improvement in activities of daily living and motor function¹
- Sustain benefits over the long term
- Provide more consistent and reliable delivery of levodopa to the brain¹

STALEVO tablets are indicated to treat patients with idiopathic Parkinson’s disease: 1. To substitute (with equivalent strength of each of the 3 components) for immediate-release carbidopa/levodopa and entacapone previously administered as individual products. 2. To replace immediate-release carbidopa/levodopa therapy (without entacapone) when patients experience the signs and symptoms of end-of-dose “wearing off” (only for patients taking a total daily dose of levodopa of 600 mg or less and not experiencing dyskinesia). STALEVO is contraindicated for use concomitantly with nonselective monoamine oxidase (MAO) inhibitors, with selegiline at doses >10 mg/day, in patients with narrow-angle glaucoma, and in patients with suspicious, undiagnosed skin lesions or a history of melanoma. Because STALEVO contains entacapone, it should not be used concurrently with COMTAN® (entacapone). The most common side effects of STALEVO therapy are dopaminergic in nature (e.g., dyskinesia, nausea). These side effects may be manageable with alteration in the drug-dosing schedule, i.e., extending the dosing interval, reducing the number of doses per day, or changing to a STALEVO strength containing less levodopa. However, rapid withdrawal or abrupt reduction of STALEVO therapy should be avoided. Other common side effects include diarrhea, hyperkinesia, urine discoloration, hypokinesia, abdominal pain, dizziness, constipation, fatigue, pain, and hallucinations. Other less frequent side effects can include other mental disturbances, orthostatic hypotension, rhabdomyolysis, severe diarrhea, dark saliva, and symptoms resembling neuroleptic malignant syndrome. Drugs metabolized by the COMT enzymes (e.g., isoproterenol, epinephrine) should be used with caution in patients receiving STALEVO. STALEVO should be used with caution in patients with severe cardiovascular or pulmonary disease, bronchial asthma, renal, hepatic, or endocrine disease, and in patients with a history of myocardial infarction or peptic ulcer.
STAILEVO provides dosing convenience in a single tablet

Three dosage strengths—each with a 1:4 ratio of carbidopa to levodopa

<table>
<thead>
<tr>
<th></th>
<th>Carbidopa</th>
<th>Levodopa</th>
<th>Entacapone</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAILEVO 50</td>
<td>12.5 mg</td>
<td>50 mg</td>
<td>200 mg</td>
</tr>
<tr>
<td>STAILEVO 100</td>
<td>25.0 mg</td>
<td>100 mg</td>
<td>200 mg</td>
</tr>
<tr>
<td>STAILEVO 150</td>
<td>37.5 mg</td>
<td>150 mg</td>
<td>200 mg</td>
</tr>
</tbody>
</table>

Enhance the Benefits of Levodopa

STAILEVO tablets contain levodopa, carbidopa, and entacapone in a ratio of 1:4:1, providing a convenient dose for patients with Parkinson's disease.

References

C-STA-1181
during clinical development of entacapone, three of these patients were also taking concomitant levodopa plus Benserazide. The adverse effects of levodopa treatment with entacapone ranged from 1-7 months in length. In one case, the adverse effect was observed in a patient who had received levodopa for 2 months prior to the start of entacapone treatment. Three patients were withdrawn from the study because of the clinical adverse effects. One patient had an episode of elevated liver enzymes, which resolved spontaneously after the drug was discontinued. Another patient developed reversible renal failure, which resolved with discontinuation of the drug. A third patient developed a rash, which resolved with discontinuation of the drug.

In the other group of patients, there were no clinical adverse effects recorded.

In all cases, the adverse effects were mild in severity and did not require discontinuation of the drug.

Overall, the data from these studies suggest that entacapone may be an effective and well-tolerated add-on therapy for patients with Parkinson's disease who are not responsive to levodopa.

Clinical Studies: The efficacy and safety of entacapone were evaluated in several clinical studies. In one study, patients with Parkinson's disease who were not responsive to levodopa therapy were randomized to receive either levodopa alone or levodopa plus entacapone. The results showed that patients receiving levodopa plus entacapone had a significant improvement in their motor function compared to those receiving levodopa alone. The improvement was sustained over a period of 12 months.

In another study, patients with advanced Parkinson's disease were randomized to receive either levodopa alone or levodopa plus entacapone. The results showed that patients receiving levodopa plus entacapone had a significant improvement in their motor function compared to those receiving levodopa alone. The improvement was sustained over a period of 12 months.

In all cases, the adverse effects of entacapone were mild in severity and did not require discontinuation of the drug.

Overall, the data from these studies suggest that entacapone may be an effective add-on therapy for patients with advanced Parkinson's disease who are not responsive to levodopa.

Conclusions: Entacapone is a well-tolerated and efficacious add-on therapy for patients with Parkinson's disease who are not responsive to levodopa therapy. It is recommended that entacapone be used as a rescue therapy for patients who experience a "wearing-off" phenomenon or fluctuating response.

References:

Table 5. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 6. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 7. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 8. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 9. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 10. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 11. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 12. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 13. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 14. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 15. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 16. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 17. Summary of Patients with Adverse Events After Start of Trial

<table>
<thead>
<tr>
<th>Drug</th>
<th>N of Patients</th>
<th>N of Events</th>
<th>Event Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
<td>100</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Entacapone</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Placebo</td>
<td>50</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>
Committee, Task Force and Regional Section Meetings

Saturday, March 5, 2005
7:00 a.m. to 8:00 a.m.
Financial Affairs Committee
Location: Iberville Room, Fourth Floor, Marriott

Sunday, March 6, 2005
7:00 a.m. to 8:30 a.m.
Archives Committee
Location: Iberville Room, Fourth Floor, Marriott
Bylaws Committee
Location: Beauregard Room, Fifth Floor, Marriott
Industrial Relations Committee
Location: Bacchus Room, Fourth Floor, Marriott
Young Members
Location: La Galerie 6, Second Floor, Marriott

12:45 p.m. to 2:30 p.m.
Movement Disorder Society – European Section
Location: St. Charles Suite, 41st Floor, Marriott
Education Committee
Location: Iberville Room, Fourth Floor, Marriott
Journal Oversight Committee
Location: Beauregard Room, Fifth Floor, Marriott
Task Force for the Development of Rating Scales for Parkinson's Disease
Location: Bacchus Room, Fourth Floor, Marriott
Delegates Meeting
Location: La Galerie 6, Second Floor, Marriott

Monday, March 7, 2005
6:30 a.m. to 7:30 a.m.
UPDRS Revision Task Force
Location: Beauregard Room, Fifth Floor, Marriott

7:30 a.m. to 8:30 a.m.
MDS Annual Business Meeting
Location: Acadia Room, Third Floor, Marriott
12:45 p.m. to 2:15 p.m.
Membership Committee
Location: Beauregard Room, Fifth Floor, Marriott
Neurosurgery Section Task Force
Location: Napoleon Suite, 41st Floor, Marriott

6:00 p.m. to 7:30 p.m.
Advocacy Groups Reception
Location: St. Charles Suite, 41st Floor, Marriott

Tuesday, March 8, 2005
7:00 a.m. to 8:30 a.m.
Scientific Issues Committee
Location: Beauregard Room, Fifth Floor, Marriott
Liaison/Public Relations Committee
Location: Lafayette Suite, 41st Floor, Marriott
Continuing Medical Education (CME) Committee
Location: Napoleon Suite, 41st Floor, Marriott

12:00 p.m. to 1:00 p.m.
International Congress Oversight Committee
Location: Napoleon Suite, 41st Floor, Marriott
1:00 p.m. to 2:00 p.m.
Awards Committee
Location: Beauregard Room, Fifth Floor, Marriott
Task Force on Epidemiology
Location: La Galerie 6, Second Floor, Marriott

1:00 p.m. to 2:30 p.m.
Congress Scientific Program Committee
Location: St. Charles Suite, 41st Floor, Marriott
Help Get Moving with PARCOPA
A Proven Drug in a New Delivery System

All the Benefits of Carbidopa-Levodopa in a New Orally Dissolving Formulation

Consider PARCOPA for Parkinson's patients who:

- **Need help due to morning rigidity**
 PARCOPA is easy to take in bed, to help patients get their morning routine moving.

- **Require strict dosing**
 PARCOPA can be taken anytime, anywhere without water or chewing.

- **Have concern about going “off”**
 PARCOPA tablets can be carried in bottles or pill cases like conventional tablets for convenient, ready availability. Patients with marked irregular (“on-off”) responses to levodopa have not been shown to benefit from carbidopa-levodopa therapy.

- **May benefit from the Rapitab™ formulation**
 The orally dissolving tablets may make it easier for patients who have trouble swallowing.

A Therapeutic Alternative to Sinemet® Tablets

- PARCOPA is available in the same strengths as Sinemet® Tablets.
- PARCOPA can be prescribed using the same dosing and administration schedules as Sinemet® Tablets.

PARCOPA™
(carbidopa-levodopa orally disintegrating tablets)
10 mg/100 mg • 25 mg/100 mg • 25 mg/250 mg

PARCOPA™ is contraindicated for concomitant use with nonselective monoamine oxidase (MAO) inhibitors, in patients with known hypersensitivity to any component of this drug, in patients with narrow-angle glaucoma and in patients with suspicious, undiagnosed skin lesions or a history of melanoma.

The most common adverse reactions reported with carbidopa-levodopa therapy have included dyskinesias, such as choreiform, dystonic, and other involuntary movements and nausea. Other side effects may include mental disturbances and symptoms resembling neuroleptic malignant syndrome. Individualize therapy to reduce adverse reactions.

PARCOPA™ should be used with caution in patients with severe cardiovascular or pulmonary disease, bronchial asthma, renal, hepatic or endocrine disease, and in patients with a history of myocardial infarction or peptic ulcer.

When patients are receiving levodopa without a decarboxylase inhibitor, levodopa must be discontinued at least 12 hours before PARCOPA™ is started.

Each 10/100 mg and each 25/100 mg orally disintegrating tablet contains phenylalanine 3.4 mg; each 25/250 mg orally disintegrating tablet contains phenylalanine 8.4 mg.

Please see Brief Summary of Prescribing Information on adjacent page.

For more information visit www.PARCOPA.com.
Exhibitor Information and Directory

General Information and Exhibit Hours
Please allow adequate time in your daily schedule to visit the Exhibit Hall, located in Preservation Hall and the LaGalerie rooms of the New Orleans Marriott. The exhibition is an integral component of your International Congress experience, offering you the opportunity to speak with representatives of companies providing services or marketing products directly related to Movement Disorders. Delegates may enter the Exhibit Hall at the entrance to Preservation Hall during the following hours:

- **Saturday, March 5**: 9:15 p.m. to 11:00 p.m.
- **Sunday, March 6**: 8:00 a.m. to 5:00 p.m.
- **Monday, March 7**: 8:00 a.m. to 5:00 p.m.
- **Tuesday, March 8**: 8:00 a.m. to 5:00 p.m.

Exhibitor Registration
Exhibitors may register at the Exhibitor Registration Desk located on the second level of the New Orleans Marriott during the following hours:

- **Friday, March 4**: 8:00 a.m. to 6:00 p.m.
- **Saturday, March 5**: 7:00 a.m. to 9:30 p.m.
- **Sunday, March 6**: 7:00 a.m. to 6:00 p.m.
- **Monday, March 7**: 7:00 a.m. to 6:00 p.m.
- **Tuesday, March 8**: 7:00 a.m. to 6:00 p.m.

Exhibitor Badge Policy
Admission to the Exhibit Hall will be by name badge only. Security guards will monitor Exhibit Hall entrances for proper identification. Exhibit stand personnel must show an official MDS exhibitor name badge in order to gain access to the Exhibit Hall during installation, show, or dismantlement hours. Independent contractor personnel, hired by an exhibitor to install and dismantle their display, should register on-site for a temporary name badge valid for only installation and dismantlement hours.

Exhibitor Badge (Yellow): Allows admittance to the Exhibit Hall area only.

Exhibitor Delegate Badge (Orange): Allows the delegate to enter the Exhibit Hall as an exhibitor and attend scientific sessions including poster presentations (access to Parallel Sessions, Skills Workshops and Video Sessions requires an additional ticket at no cost.)

Endorsement Disclaimer
Products and services displayed in the Exhibit Hall or advertised in the program occur by contractual business arrangements between MDS and participating companies and organizations. These arrangements do not constitute nor imply an endorsement by MDS of these products and services.
Exhibitor Information and Directory

Boehringer Ingelheim
900 Ridgebury Road
Ridgefield, CT 06877
USA
Telephone: +1 203-798-9988
Fax: +1 203-791-6004
Web site: www.boehringer-ingelheim.com
Booth #: 204

The latest information about Mirapex® (pramipexole dihydrochloride), a dopamine agonist indicated for the treatment of the signs and symptoms of idiopathic Parkinson’s disease, will be made available to health care professionals who are attending the MDS International Congress. For more information about this exciting product, come visit us.

Booth #: 412

Boehringer Ingelheim Pharmaceuticals, Inc. is dedicated to the research and development of drug therapy for Restless Legs Syndrome (RLS), a neurological disorder that currently affects the lives of millions of people in the United States. Please visit the Boehringer Ingelheim Pharmaceuticals, Inc. exhibit to learn more about this affliction.

Elsevier
360 Park Avenue South
New York, NY
USA
Telephone: +1 212-989-5800
Booth #: 396

Elsevier presents high quality books, journals and online offerings for science, technology and medical fields. Our products, such as Animal Models of Movement Disorders, edited by Mark LeDoux, and top-ranked journals such as Parkinsonism and Related Disorders, present the hottest topics and most current research needed to stay vital in the field.

European Federation of Neurological Societies
University Campus, Courtyard 1
Alser Strasse, 4
Vienna A-1090
Austria
Telephone: +43 1 889 0503 11
Fax: +43 1 889 050 313
Web site: www.efns.org
Booth #: 318

The aim of the European Federation of Neurological Societies is to advance the development of the neurological sciences in Europe. Forty-one European national neurological associations are registered members of the EFNS. The EFNS welcomes individual members from all over the world. For more information visit www.efns.org.

GE Healthcare
Amersham Place
Little Chalfont, Bucks HP7 9NA
United Kingdom
Telephone: +44 1494 54 400
Fax: +44 1494 542 503
Web site: www.gehealthcare.com
Booth #: 308

GE Healthcare provides transformational medical technologies that will shape a new age of patient care. GE Healthcare offers a broad range of services to improve productivity in healthcare and enables healthcare providers to better diagnose, treat and manage patients. For more information about GE Healthcare, visit www.gehealthcare.com.

GlaxoSmithKline
5 Moore Drive
Research Triangle Park, NC 27709
USA
Telephone: 1-888-256-1699
Fax: +1 919-315-6049
Web site: www.gsk.com
Booth #: 104

GlaxoSmithKline is a leading research-based pharmaceutical company with a powerful combination of skills to discover and deliver innovative medicines. We offer a number of programs to support effective health management strategies and improve patient care. Please visit our exhibit to learn more about our products.

Humana Press
999 Riverview Drive
Totowa, NJ 07512
USA
Telephone: +1 973-256-1699
Fax: +1 973-256-8341
Web site: www.humanapress.com
Booth #: 404

Humana Press will present important medical books featuring: Atypical Parkinsonian Disorders: Clinical Research Aspects (Litvan); Surgical Treatment of Parkinson’s Disease and Other Movement Disorders (Tarsy, Vitek, Lozano); Movement Disorder Emergencies: Diagnosis and Treatment (Frucht); Parkinson’s Disease and Nonmotor Dysfunction (Pfeiffer) and Mental and Behavioral Dysfunction in Movement Disorders (Bedard et al).
Exhibitor Information and Directory

IM Systems
1055 Taylor Avenue
Suite 300
Baltimore, MD 21286
USA
Telephone: +1 410-296-7723
Fax: +1 410-321-0643
Booth #: 415

Our miniature “DigiTrac” wrist-worn monitor records the frequency and amplitude of movements, and provides PC download for graphical plots and FFT analysis. The monitor also measures a patient’s real-time tremor in the clinical setting. The “PAM-RL” leg monitor is specifically designed to detect and quantify RLS and PLMS activity.

In Step Mobility
8136 Lawndale
Skokie, IL 60076
USA
Telephone: +1 847-676-1275
Fax: +1 847-676-1202
Booth #: 409

In-Step Mobility produces advanced walking aids for neurological conditions. In addition to having innovative walkers, we produce laser cueing devices for Parkinson’s freezing. Other Parkinson’s products are currently in development.

Ipsen Limited
190 Bath Road
Slough, Berkshire SL1 3XE
United Kingdom
Telephone: +44 1753 62 7777
Fax: +44 1753 62 7778
Web site: www.ipsen.co.uk
Booth #: 390

Ipsen is a European pharmaceutical group which currently markets over 20 medicinal products throughout the world, mainly in Europe. The Group’s product portfolio includes those marketed to specialists working in the Group’s targeted disease areas (oncology, endocrinology and neuromuscular disorders) which represent its priority lines of development.

John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
Telephone: +1 201-748-6000
Fax: +1 201-748-6617
Web site: www.wiley.com
Booth #: 320

John Wiley & Sons is an independent, global publisher of scientific, technical and medical books, journals, and electronic products. Featured publications include: Movement Disorders, the official publication of the MDS, Annals of Neurology, Databasing the Brain, Drug Discovery for Nervous System Diseases, and Functional Neuroanatomy: An Interactive Text and Manual.

Kyowa Hakko Kogyo Co., Ltd.
1-6-1 Ohtemachi Chiyoda-ku
Tokyo 100-8185
Japan
Telephone: +1 81 3 3282 0007
Fax: +1 81 3 3274 1968
Web site: www.kyowa.co.jp/eng/index.htm
Booth #: 113

Kyowa Hakko Kogyo Co., Ltd. (KHK) is one of Japan’s foremost biotechnology companies. KHK and its subsidiaries, Kyowa Pharmaceutical, Inc. and Kyowa Hakko U.K. Ltd., are pursuing international development for four NCE drug candidates. KW-6002, an adenosine A2a receptor antagonist, is currently in Phase III development for Parkinson’s disease.

Lippincott Williams & Wilkins
530 Winbourne Drive
Slidell, LA 70461
USA
Telephone: +1 985-781-6525
Fax: +1 985-781-8031
Booth #: 411

Publisher of the latest books and journals available in neurology.

Medtronic Neurological
710 Medtronic Parkway
Minneapolis, MN 55432-5604
USA
Telephone: +1 763-505-0027
Fax: +1 763-505-0589
Web site: www.medtronic.com
Booth #: 300

Medtronic Neurological’s Activa® Therapy is a reversible and adjustable treatment for some of the most disabling symptoms of Parkinson’s disease and essential tremor. It uses an implanted neurostimulation system, akin to a pacemaker, to relieve symptoms when medication alone fails to provide adequate benefit or consistently causes intolerable side effects.

Mylan Bertek Pharmaceuticals, Inc.
P. O. Box 14149
Research Triangle Park, NC 27709
USA
Telephone: +1 919-991-9800
Fax: +1 919-993-5907
Web site: www.bertek.com
Booth #: 103 & 107

Mylan Bertek Pharmaceuticals Inc., based in Research Triangle Park, NC, was founded in 1996 as the proprietary products division of Mylan Laboratories Inc. Mylan Bertek Pharmaceuticals has medical and clinical expertise in neurology, as well as an experienced marketing and sales staff in the field of neurology products. The company has actively pursued new products for the treatment of neurological diseases, including epilepsy and Parkinson’s disease. Stop by our booth to see how we are making a difference in the lives of patients with Parkinson’s disease.
Exhibitor Information and Directory

National Parkinson Foundation
1501 NW 9th Avenue
Miami, FL 33136
USA
Telephone: 1-800-327-4545
Fax: +1 305-243-7851
Booth #: 410
The National Parkinson Foundation (NPF) is the largest world-
wide organization serving persons affected by Parkinson’s disease.
The Foundation supports scientific research into the cause and
cure for Parkinson’s disease, as well as programs to improve
the delivery of care and the quality of the lives of those who must deal
with the disease every day. In addition to research, NPF funds
education, specialized training, outreach services, and advocacy for
persons with Parkinson’s disease, their caregivers and families, and
health-care professionals.

National Spasmodic Dysphonia Association
230 Park Boulevard
Suite 203
Itasca, IL 60143
USA
Telephone: 1-800-795-NSDA
Booth #: 417
Spasmodic Dysphonia is a neurological voice disorder that
involves involuntary “spasms” of the vocal cords causing interrup-
tions of speech and affecting the voice quality. The National
Spasmodic Dysphonia Association strives to advance medical
research, promote physician and public awareness, and sponsor
support groups for patients and their families.

The National Spasmodic Torticollis Association
9920 Talbert Ave. #233
Fountain Valley, CA 92708
USA
Telephone: +1 714-378-7837
Fax: +1 714-378-7830
Web site: www.torticollis.org
Booth #: 118
The National Spasmodic Torticollis Association is a non-profit
organization dedicated to: providing information and support to
ST patients, educating the public and the medical community
about ST, advocating for the rights of those with ST and
promoting research on ST.

Neurotoxin Institute
100 Avenue of the Americas
7th Floor
New York, NY 10013
USA
Telephone: 1-866-682-6368
Fax: +1 212-925-1026
Web site: www.neurotoxininstitute.com
Booth #: 403
The Neurotoxin Institute (NTI) is a multi-disciplinary organiza-
tion created to serve as a comprehensive independent source of
information related to the basic science and the clinical applica-
tions of neurotoxin therapies. The Institute fosters the learning
and teaching of both theory and practical techniques, and
encourages further research in support of these goals.

Novartis International AG
Lichstr. 35
Basel CH-4002
Switzerland
Telephone: +41 61 324 1111
Fax: +41 61 324 6652
Web site: www.novartis.com
Booth #: 214
Novartis AG is a world leader in pharmaceuticals and consumer
health, headquartered in Basel, Switzerland. Novartis researches,
develops, manufacturers and markets leading innovative prescrip-
tion drugs used to treat a number of diseases and conditions and
has been a leader in the Neuroscience area for more than 50 years.

Orion Corporation Orion Pharma
Orionintie 1
FIN-02200 Espoo
Finland
Tel: +358 10 429 4701
Global Brand Manager, Susanna Laajava
Fax: +358 10 429 3815
Web site: www.orionpharma.com
Booth #: 214
Orion Pharma, the pharmaceutical division of the Orion Group, is
a North European R&D-based, business-driven pharmaceuticals
company with special emphasis on developing innovative
treatments for global markets. Operationally its businesses
comprise Core Therapy Areas, Specialty Products, Animal Health
and Fermion. The R&D and product strategies are focused on
central nervous system disorders, cardiovascular diseases and
intensive care, and hormone therapies. Partnerships and networking
are increasingly important throughout the value chain, both
in research and development and in reaching the global markets.
Please feel invited to visit the combined exhibition of Novartis
and Orion Pharma.
For further information please visit the companies’ websites.
www.novartis.com
www.orion.fi/english
Exhibitor Information and Directory

The Parkinson's Association of Louisiana
2030 Dickory Avenue
#202
Harahan, LA 70123
USA
Telephone: +1 504-733-7203
Fax: +1 504-733-7203
Web site: www.parkinsonsla.org
Booth #: 402

The Parkinson's Association of Louisiana (PAL), is a non-profit, 501 (c) 3 corporation, made up of dedicated volunteers sharing a common vision. The mission of the PAL is to provide support, education and funding for the Parkinson's community of Louisiana with the ultimate goal of finding a cure.

Prestwick Pharmaceuticals, Inc.
1825 K Street NW
Suite 1475
Washington, DC 20006
USA
Telephone: +1 202-296-1400
Fax: +1 202-296-7450
Web site: www.prestwickpharma.com
Booth #: 394

Prestwick Pharmaceuticals, Inc. is an emerging Specialty Pharmaceutical company that focuses on treatments for Central Nervous System (CNS) disorders. The company's lead product, Tetrabenazine, has been approved in Europe, Canada and Australia for a series of disabling hyperkinetic movement disorders. Prestwick has completed two pivotal phase III clinical trials with Tetrabenazine in the U.S. and plans to file an NDA in 2005.

Priority Healthcare
250 Technology Park
Lake Mary, FL
USA
Telephone: 1-800-892-9622
Fax: +1 407-804-3921
Web site: www.priorityhealthcare.com
Booth #: 405

Priority Healthcare Corporation is a national specialty pharmacy and distributor that provides biopharmaceuticals, complex therapies, and related disease treatment services. Priority Healthcare provides comprehensive programs for patients, payors, physicians, and pharmaceutical manufacturers for a growing number of disease states including cancer, hepatitis C, respiratory and pulmonary conditions, infertility, rheumatoid arthritis, hemophilia, multiple sclerosis, and macular degeneration.

Restless Legs Syndrome Foundation
819 Second Street SW
Rochester, MN 55902
USA
Telephone: +1 507-287-6465
Fax: +1 507-287-6312
Web site: www.rls.org
Booth #: 401

The Restless Legs Syndrome Foundation (RLS) is a non-profit organization dedicated to improving the lives of the millions of men, women and children who live with this often devastating disease, through increased awareness, improved treatments and research to find a cure.

Schwarz Pharma AG
Alfred-Nobel-Strasse 10
Monheim 40789
Germany
Telephone: +49 2173 48 0
Fax: +49 2173 48 1108
Web site: www.schwarzpharma.com
Booth #: 119

SCHWARZ PHARMA, a multi-national pharmaceutical company, develops and markets innovative drugs for unmet medical needs. With an established reputation for excellence in cardiology, the company has extended its focus to include urological and neurological diseases. Within neurology, ongoing projects include treatments for Parkinson's disease, restless legs syndrome, epilepsy and neuropathic pain. SCHWARZ PHARMA is based in Monheim, Germany and employs over 3,800 professionals worldwide.

Schwarz Pharma, Inc. (USA)
6140 West Executive Drive
Mequon, WI 53092
USA
Telephone: +1 262-238-5441
Fax: +1 262-238-0961
Booth #: 314

PARCOPA™ (carbidopa-levodopa orally disintegrating tablets) is a therapeutic alternative to Sinemet® Tablets that provides all the benefits of carbidopa-levodopa in a unique orally dissolving formulation. Featuring RapiTab™ orally dissolving technology, PARCOPA offers patients suffering from Parkinson's disease an easy, accessible way to take levodopa replacement therapy.
Exhibitor Information and Directory

The Society for Progressive Supranuclear Palsy
11350 McCormick Road
Executive Plaza III, Suite 906
Hunt Valley, MD 21031
USA
Telephone: +1 410-486-3330 or 1-800-457-4777
Fax: +1 410-486-4283
Web site: www.psp.org
Booth #: 324
Progressive supranuclear palsy (PSP) is an under-recognized terminal brain disease. The Society for Progressive Supranuclear Palsy is dedicated to increasing awareness of PSP, advancing research toward a cure and providing support and education for persons with PSP, their families and healthcare professionals.

Valeant Pharmaceuticals International
3300 Hyland Ave.
Costa Mesa, CA 92626
USA
Telephone: +1 714-545-0100
Fax: +1 714-668-3139
Web site: www.valeant.com
Booth #: 114
Valeant Pharmaceuticals International is a global, publicly traded specialty pharmaceutical company that discovers, develops, manufactures and markets a broad range of pharmaceutical products in three therapeutic areas, neurology, infectious disease and dermatology.

Vitaline Formulas
825 Challenger Drive
Green Bay, WI 54211
USA
Telephone: +1 920-406-3614
Fax: +1 920-406-3614
Web site: www.vitalinecoq10.com
Booth #: 408
For more than 20 years, Vitaline has been involved in the study of CoQ10’s effect on neurological health. More than 25 research-institute-sponsored clinical studies have used Vitaline CoQ10. Vitaline CoQ10 has been designated an Orphan Drug and has several patent-pending files. To find out more, visit www.vitalinecoq10.com or call 1-800-287-5972.

WE MOVE
204 West 84th Street
New York, NY 10024
USA
Telephone: +1 212-875-8312
Fax: +1 212-875-8389
Web site: www.wemove.org
Booth #: 322
WE MOVE is a not-for-profit organization providing Movement Disorder information and education to health professionals and patients. At www.mdvu.org, health care professionals will find research news, diagnostic and treatment information, online CME, practice tools and more. Physicians can refer patients and families to www.wemove.org for information and support.

World Parkinson Congress, Inc.
710 West 168th Street
Room 336
New York, NY 10032
USA
Telephone: +1 212-923-4700
Fax: +1 212-923-4778
Web site: www.worldPDcongress.org
Booth #: 393
The World Parkinson Congress is dedicated to providing an international forum for the best scientific discoveries, medical practices and caregiver initiatives related to Parkinson’s disease. By uniting the global Parkinson’s community, the Congress will highlight best international treatment practices and hopefully expedite the discovery of a cure for this devastating disease.
For more information regarding patient demonstration videos, webcast training sessions and patient information kits, please call 1-877-7APOKYN (727-6596).

Adjunctive MIRAPEX improves functioning vs placebo1,2*

UPDRS ADL “ON,” MOTOR, AND THERAPY-RELATED COMPLICATION SCORES**

And significantly decreased the levodopa dose1*
- In this same trial, adjunctive MIRAPEX significantly decreased the levodopa dose vs placebo (27% vs 5%, P<0.001)**

Initial MIRAPEX maintained control while sparing the dose of levodopa**

AT 4 YEARS, PATIENTS TREATED WITH MIRAPEX NEEDED 38% LESS LEVODOPA TO MAINTAIN EFFECTIVE CONTROL (mean total daily dose)**

Adjunctive MIRAPEX improves functioning while sparing levodopa1,2

MIRAPEX is indicated for the treatment of the signs and symptoms of idiopathic Parkinson's disease. Patients have reported falling asleep without perceived warning signs during activities of daily living, including operation of a motor vehicle, which sometimes resulted in accidents. Hallucinations and postural (orthostatic) hypotension may occur. The most commonly reported adverse events in early and late disease in clinical trials were dizziness, dyskinesia, extrapyramidal syndrome, hallucinations, headache, insomnia, somnolence, and nausea.

Please see Brief Summary of Prescribing Information on adjacent page.
DIFFERENCES IN DIABETIC NEUROPATHY: A COMPARISON BETWEEN PEOPLE WITH AND WITHOUT DIABETES

Table 2: Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Placebo</th>
<th>Metformin</th>
<th>P = Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic neuropathy</td>
<td>14%</td>
<td>9%</td>
<td>0.05</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>12%</td>
<td>4%</td>
<td>0.001</td>
</tr>
<tr>
<td>Nausea</td>
<td>7%</td>
<td>3%</td>
<td>0.01</td>
</tr>
<tr>
<td>Headache</td>
<td>4%</td>
<td>2%</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Diabetic Neuropathy: Diabetic neuropathy is a common complication of diabetes, affecting up to 50% of patients with diabetes over time. It can result in numbness, tingling, pain, and weakness in the legs and hands. Metformin has been shown to reduce the risk of diabetic neuropathy in some studies.

Hypoglycemia: Hypoglycemia is a low blood sugar that can occur in people with diabetes. Metformin has been shown to reduce the risk of hypoglycemia in some studies.

Nausea: Nausea is a common side effect of many medications, including metformin. In this study, metformin was associated with a lower risk of nausea compared to placebo.

Headache: Headache is a common side effect of many medications. In this study, metformin was associated with a lower risk of headache compared to placebo.

Diabetes Management: Patients with diabetes should work closely with their healthcare provider to manage their condition. This may include regular blood glucose monitoring, dietary changes, exercise, and medication management. Metformin is often prescribed to help control blood sugar levels in people with type 2 diabetes.

Conclusion: This study highlights the importance of effective diabetes management and the potential benefits of metformin in reducing the risk of diabetic neuropathy and related adverse events. Further research is needed to better understand the mechanisms behind these findings and to optimize diabetes care for patients.
MOMENTS

like this are what Parkinson's patients are longing for.

Activa® Therapy increases Parkinson’s patients’ “on” time by an average of 6 hours.*

When drugs no longer provide adequate relief, there’s Activa Therapy.

- Effective for 87% of qualifying Parkinson’s disease patients.*
- Effective for bradykinesia/akinesia, tremor, and/or rigidity.*
- More than 30,000 people implanted worldwide.

Visit Medtronic at booth 300 to learn more.

*Results were for a subset of patients whose data were verified against medical records. Data on file at Medtronic, Inc.
Activa® Parkinson’s Control Therapy, Tremor Control Therapy, and Dystonia Therapy: Product technical manual must be reviewed prior to use for detailed disclosure.

Indications: Parkinson’s Control Therapy: Bilateral stimulation of the internal globus pallidus (GP) or the subthalamic nucleus (STN) using Medtronic Activa® Parkinson’s Control Therapy is indicated for adjunctive therapy in reducing some of the symptoms of advanced, levodopa-responsive Parkinson’s disease that are not adequately controlled with medication.

Tremor Control Therapy: Unilateral thalamic stimulation by the Medtronic Activa® Tremor Control System is indicated for the suppression of tremor in the upper extremity. The system is intended for use in patients who are diagnosed with Essential Tremor or Parkinsonian tremor not adequately controlled by medications and where the tremor constitutes a significant functional disability. The safety or effectiveness of this therapy has not been established for bilateral stimulation.

Dystonia Therapy: Unilateral or bilateral stimulation of the internal globus pallidus (GP) or the subthalamic nucleus (STN) by the Medtronic Activa System is indicated as an aid in the management of chronic, intractable (drug refractory) primary dystonia, including generalized and segmental dystonia, hemidystonia, and cervical dystonia (torticollis), for individuals 7 years of age and older.

Contraindications: Contraindications include patients who will be exposed to MRI using a full body radiofrequency (RF) coil or a head transmit coil that extends over the chest area, patients who are unable to properly operate the neurostimulator, or for Parkinson’s disease and Essential Tremor, patients for whom stimulation is unsuccessful. Also, diabetes (e.g., shortwave diathermy, microwave diathermy or therapeutic ultrasound diathermy) is contraindicated because diathermy’s energy can be transferred through the implanted system (or any of the separate components), which can cause tissue damage and can result in severe injury or death. Diathermy can damage parts of the neurostimulation system.

Warnings/ Precautions/ Adverse Events: There is a potential risk of tissue damage using stimulation parameter settings of high amplitudes and wide pulse widths. Extreme care should be used with lead implantation in patients with a heightened risk of intracranial hemorrhage. Do not place the lead-extension connector in the soft tissues of the neck. Placement in this location has been associated with an increased incidence of lead fracture. Theft detectors and security screening devices may cause stimulation to switch ON or OFF, and may cause some patients to experience a momentary increase in perceived stimulation. Although some MRI procedures can be performed safely with an implanted Activa System, clinicians should carefully weigh the decision to use MRI in patients with an implanted Activa System. MRI can cause induced voltages in the neurostimulator and/or lead possibly causing discomfort, jolting, or shocking levels of stimulation. MRI image quality may be reduced for patients who require the neurostimulator to control tremor, because the tremor may return when the neurostimulator is turned off.

Severe burns could result if the neurostimulator case is ruptured or pierced. The Activa System may be affected by, or adversely affect, medical equipment such as cardiac pacemakers or therapies, cardioverter/defibrillators, external defibrillators, ultrasonic equipment, electrocautery, or radiation therapy. Safety and effectiveness has not been established for patients with neurological disease other than Parkinson’s disease or Essential Tremor, previous surgical ablative procedures, dementia, cognitive problems, or severe depression; or for patients who are pregnant under 8 years, over 75 years of age (Parkinson’s Control Therapy) or over 80 years of age (Tremor Control Therapy). For patients with Dystonia, age of implant is suggested to be that at which brain growth is approximately 90% complete or above. Additionally, the abrupt cessation of stimulation for any reason should be avoided as it may cause a return of disease symptoms. In some cases, symptoms may return with an intensity greater than was experienced prior to system implant (“kickback” effect). Adverse events related to the therapy, device, or procedure can include: stimulation not effective, cognitive disorders, pain, dyskinesia, dystonia, speech disorders including dysarthria, infection, pain, paresthesia, intracranial hemorrhage, electromagnetic interference, cardiovascular events, visual disturbances, sensory disturbances, device migration, paresthesia, abnormal gait, incoordination, headaches, lead repositioning, thinking abnormal, device explant, haviga, lead fracture, seizures, respiratory events, and shocking or jolting stimulation.

Humanitarian Device (Dystonia Therapy): Authorized by Federal Law for the use as an aid in the management of chronic, intractable (drug refractory) primary dystonia, including generalized and segmental dystonia, hemidystonia, and cervical dystonia (torticollis), for individuals 7 years of age and older.

For further information, please call Medtronic at 1-800-633-8766.

Rx only
Poster Session 1

Sunday, March 6, 2005

Poster Viewing: 8:30 a.m. to 5:00 p.m.
Authors Present: 12:45 p.m. to 2:30 p.m.
Abstracts: 1-187

Ataxia

Poster numbers 1-5
1 SCA 8 presenting with cervical dystonia and parkinsonism (case report)
 F. I. Khan, R. L. Scales
2 Quantitation of ramp tracking accuracy and tapping rhythm variability in ataxic and control subjects
 J. W. S. Wong, K. G. Tuck, D. J. Needham, B. McGrath, E. Storey
3 Fragile-X–associated tremor/ataxia syndrome presenting in a woman on chemotherapy
 J. P. O’Dwyer, C. Clabby, J. C. Crown, D. E. Barton, M. Hutchinson
4 A new form of tauopathy: clinico–pathologic correlation in a case with syndrome of progressive ataxia and palatal tremor (PAPT)
 Z. Mari, A. Vormeyer, V. Zhukareva, K. Uryu, V. Lee, M. Hallett
5 Particular phenotypes of autosomal dominant spinocerebellar ataxias in Russian families
 S. N. Illarioshkin, S. A. Klyushnikov, T. N. Proskokova, L. V. Novikova, I. A. Ivanova-Smolenskaya, E. D. Markova

Basic Science

Poster numbers 6-16
6 Premotor control of orbicularis oculi motoneurons by the trigeminal nuclear complex
 S. Gong, M. DeCuypere, M. S. LeDoux
7 Biochemical differences exist between clinical phenotypes of progressive supranuclear palsy: Richardson’s syndrome and PSP–Parkinsonism
 D. R. Williams, R. de Silva, A. J. Lees
8 Changes of homotopic and heterotopic short–latency afferent inhibition on a surround muscle during finger movement
 B. Voller, A. St Clair Gibson, S. Pirio Richardson, M. Lomarev, E. Aufl, M. Hallett
9 Striosome–dominant neuronal activity in dorsolateral striatum is correlated with the severity of dystakinesia in a rat model of parkinsonism
 E. Saka, A. M. Graybiel
10 Early– and higher–order projections from the primate cerebellum to orbicularis oculi motoneurons
 M. DeCuypere, S. Gong, M. LeDoux
11 Expression of an heparin–binding growth associated molecule (pleiotrophin) by striatal interneurons and nigral dopaminergic neurons
 I. R. Taravini, J. E. Ferrario, J. Courty, G. M. Murer, R. Raisman, O. S. Gershani
12 Impairment of protein degradation in PC12 cells expressing mutant α-synuclein
 K. Vekrellis, A. M. Cuervo, L. Stefanis
13 Pathoarchitectonic staging of sporadic Parkinson’s disease brains
 K. Del Tredici, R. de Vos, U. Rubea, E. Jansen Steur, H. Braak
14 Silencing of UCP5 enhances MPP+–induced neurotoxicity in SH–SY5Y cells
15 Distribution of Lewy pathology in the basal ganglia of the Lewy body disorders suggests involvement in neuropsychiatric symptoms
 T.-W. Liang, J. E. Duda
16 Full and partial dopamine agonists and the relationship to dyskinesia priming in MPTP–treated marmosets
 L. C. Johnston, S. Rose, A. C. McCready, M. Jackson, M. Hasselink, P. J. Jenner

Chorea

Poster numbers 17-34
17 Crack dancing in the UK: a video presentation
 S. Kamath, N. Bajaj
18 Motor and cognitive impairment in Huntington’s disease
 J. Klempir, J. Roth, N. Spackova, O. Novakova, R. Jech, E. Ruzicka
19 Longitudinal study in Huntington’s disease patients with IBZM–SPECT
 S. Lanfranchi, M. Perini, E. Viganò, C. Gobbo
20 McLeod syndrome with hepatic disease
 R. H. Walker, A. Danek, H. H. Jung, R. Davey, M. Reid
21 Drug–enhanced acantotic chorea: a case report
 M. Perini, A. Pozzi, F. Mazzucchelli, D. Zarcone
22 Psychosis associated with acute Sydenham’s chorea
 A. L. Teixeira, D. P. Maia, F. Cardoso
23 Vocal tics in Sydenham’s chorea
 A. L. Teixeira, D. P. Maia, F. Cardoso
24 The UFMG Sydenham’s chorea rating scale (USCRS): discrimination properties
 A. L. Teixeira, D. P. Maia, F. Cardoso
25 Efficacy and safety of risperidone in the treatment of Sydenham’s chorea
 A. L. Teixeira, D. P. Maia, F. Cardoso
26 Persistent bradykinesia following Sydenham’s chorea
 A. L. Teixeira, D. P. Maia, F. Cardoso
27 Co–occurrence of seizure and chorea in a patient with nonketotic hyperglycemia
28 Paraneoplastic chorea associated with lung carcinoma
29 Longitudinal changes in MRI and neuropsychological measures in early Huntington’s disease – a pilot study
30 Falling in Huntington’s disease (HD)
 Y. A. M. Grimbergen, M. Knol, B. R. Bloem, H. P. H. Kremer, R. A.C. Roos, M. Munneke
31 Quantitative assessment of chorea and bradykinesia in Huntington disease
 V. Wheelock, T. Tempkin, L. Rubchinsky, R. Akkinepali, R. Henry, K. Sigvardt
32 Long–term effects of olanzapine in Huntington’s disease
 V. Wheelock, T. Tempkin
33 A pilot study of the clinical efficacy and safety of memantine for Huntington’s disease
 N. I. Mejia, C. B. Hunter, K. Flores, W. G. Ondo
34 Biballism in systemic lupus erythematosus and antiphospholipid syndrome
Poster Session 1

Clinical Electrophysiology
Poster numbers 35-45
35 Safety, efficacy and duration of effect of a new botulinum neurotoxin type A preparation free of complexing proteins
K. Wohlfarth, C. Mueller
36 The motor programming and motor activity can modulate the cognitive performance: intracerebral P3 latency variability in modified auditory odd–ball paradigms involving a cued motor task
P. Kanovsky, S. Hana, K. Hana, B. Martin, D. Pavel, R. Ivan
37 Abnormal spinal inhibition in psychogenic dystonia
A. J. Espay, F. Morgante, C. A. Gunraj, A. E. Lang, R. Chen
38 The effect of STN stimulation on brainstem and cortical excitability in Parkinson’s disease
M. Poetter, T. Holler, R. Wenzelburger, H. Siebner, G. Deuschl, J. Volkmann
39 Changes in cortical excitability with thalamic deep brain stimulation
G. F. Molnar, A. Sailer, C. A. Gunraj, A. E. Lang, A. M. Lozano, R. E. Chen
40 Disturbed surround inhibition in idiopathic Parkinson’s disease during voluntary movement
Y. H. Sohn, J.-S. Kim, S. Y. Kang
41 Contribution of transcranial magnetic stimulation to the differential diagnosis of parkinsonian syndromes: A comparative study
A. Eusebio, S. Attarian, A. Rico, T. Würtjas, J.-P. Azulay
42 Evaluation of remote effects of chronic botulinum toxin type A treatment by single fibre electromyography
E. Milano, M. Coletti Moja, C. Favarato, F. Celotto, L. Durelli
43 Quantitative EEG (qEEG) and neuropsychological findings in Parkinson’s disease and related dementias: preliminary findings of an ongoing study
E. Calabrese, L. Pugnetti, M. Alberoni, E. Farina, S. Rapuzzi, R. Nemni
44 Effect of L–dopa on dimensional complexity of EEG in patients with PD and dementia
G. Sahin, M. Demirci, B. Bastan, B. Elibol
45 Pallidal neuron activities analysis in two generalized dystonia patients of neurodegeneration with brain iron accumulation
S.-H. Lin, S.-Y. Chen, S.-Z. Lin

Drug-induced Movement Disorders
Poster numbers 46-59
46 Antipsychotic–induced acute and chronic akathisia: a comparison of clinical features
J.-H. Kim, U.-G. Kang, Y.-M. Ahn, K.-S. Ha, Y.-S. Kim
47 Acute and tardive dyskinesias induced by aripiprazole
P. Agarwal, L. C. Seberger, D. Hall, V. R. Segro
48 Effect of typical and atypical neuroleptics on nigral NFkB expression in an experimental model of tardive dyskinesia
M. Saldaña, M. Bonastre, E. Aguilar, C. Marin
49 Incidence of presumptive tardive dyskinesia in elderly patients treated with olanzapine or conventional antipsychotics
B. J. Kinon, V. Stautler, C. J. Kaiser, D. P. Hay, S. Kollack-Walker
50 Cholinergic stimulation does not worsen impaired complex motion performance in cholinergic neurodegeneration
S. Muhlack, H. Pruntek, F. Tracik, T. Müller
51 Paroxysmal pisa syndrome secondary to levodopa withdrawal
G. M. Wali
52 How atypical antipsychotics spare motor side effects – the critical role of the d2 receptor
S. Kapur
53 Levodopa–induced hyperactivity in MPTP–treated mice
A. P. Nicholas, J. D. Echols
54 Parkinsonism associated with adalimumab in a patient with rheumatoid arthritis
R. Tintner, Y. S. Silay, S. Sesoms, J. Jankovic
55 Anti epileptic drugs induced oculogyric crisis
56 Dyskinesia occurs in 34% of Parkinson’s disease patients receiving dopaminergic treatment: findings from a retrospective international study
T. Mueller, H. Russ, D. Haeger
57 Drug–induced movement disorders caused by medications other than dopamine receptor blockers in the Veteran population
58 Results of a series of 55 consecutive patients with movement disorders treated by bilateral micro–electrode–guided stereotactic STN, GPI and VIM – DBS with a time – saving intraoperative protocol of reduced teststimulation, looking mainly for stimulation – induced side effects
F. Hertel, M. Zuchner, C. Decker, I. Weimar, B. Rohrscheider, M. Bettag
59 Medications associated with the onset of tardive dyskinesia
N. I. Mejia, K. D. Vuong, C. B. Hunter, J. Jankovic

Dystonia
Poster numbers 60-111
60 Posterior auricular muscle “dystonia”
61 Improvement of cervical dystonia: role of transcranial magnetic stimulation simulating sensory tricks effect
R. Bhidayasiri, A. Wu, L. Koski, M. Iacoboni, J. C. Mazzotta, J. M. Bronstein
62 Long–term, prospective, open label trial of botulinum toxin type B in cervical dystonia
S. A. Factor, E. S. Molho, S. Evans, P. J. Feustel
63 Subthalamic nucleus deep brain stimulation for idiopathic dystonia
G. S. Liang, G. H. Bultuch, P. J. Moberg, J. L. Jaggi, J. V. Noorijian, G. Klein-Fisman
64 Utility of adjunctive electromyography in botulinum toxin injection for cervical dystonia
R. L. Barbano, C. Comella, W. Fan, S. Leurgans, The Dystonia Study Group
65 Clinical analysis of dystonia in parkinsonism
W. T. Yoon, W. Y. Lee, J. Y. Youn, E. J. Chung
66 Sensory control of orientation and stabilization in cervical dystonia
F. Vacherot, M. Vaugoyeau, S. Mallau, S. Vid, S. Soularyrol, J.-P. Azulay
67 Motor imagery in patients with cervical dystonia, an fMRI study
P. M. de Vries, K. A. Johnson, E. W. Gieteling, B. M. de Jong, D. E. Bohning, M. S. George, K. L. Leenders
68 Spinal axial Injections of botulinum toxin in generalized dystonia: two case reports
D. D. Duane, G. E. Heimburger
69 Impaired motor learning in mice expressing torsinA with the DYT1 dystonia mutation
N. Sharma, M. G. Baxter, J. Petraitiz, D. C. Bragg, D. G. Standaert, X. O. Breakefield

70 Intracortical inhibition of the motor cortex in Segawa's disease
R. Hanajima, M. Segawa, Y. Nomura, Y. Ugawa

71 Planning genetic studies in primary adult-onset dystonia: sample size estimates based on examination of first-degree relatives
G. Delfazio, D. Martino, M. S. Aniello, G. Masi, A. Berardelli, P. Livrea

72 Effective treatment of isolated jaw-opening dystonia
M. S. LeDoux

73 Evaluation of the Methylentetrahydrofolate reductase (MTHFR) gene in patients with primary dystonia
U. J. Muller, J. Mueller, G. K. Wenning, T. Gasser, W. Poewe, F. Asmus

74 Motor system inhibition in dopa-responsive dystonia and its modulation by treatment

75 Prevalence of cervical dystonia and spasmodic torticollis in the U.S.
J. Jankovic, J. Tsui, C. Bergeron

76 An unusual phenotype in DYT1 dystonia: stiff man syndrome
C.-W. Fung, V. Wong, C.-W. Lam

77 Botulinum toxin type A and pain responsiveness in cervical dystonia: a dose response study
M. Relja, S. Téralovic

78 Measuring clinical change in cervical dystonia: a comparison of the CDIP-58 with existing rating scales

79 An enigmatic relationship between dopamine and intracellular purine metabolism
J. C. Lewers, T. L. Shirley, H. A. Jinnah

80 The usefulness of SPECT DAT scans in differentiating dystonic rest tremor from Parkinson's disease: some illustrative cases

81 Adult-onset primary lower limb dystonia: clinical description of a rare entity
S. A. Schneider, M. J. Edwards, N. P. Quinn, K. P. Bhatia

82 DYT1 and dopa-responsive dystonia during menses and pregnancy
V. E. Shanker, S. B. Bressman, D. Raymond, R. Saunders-Pullman

83 Motor system inhibition in dopa-responsive dystonia and its modulation by levodopa treatment

84 Determination of the contribution of the clinical examination and the EMG in planning and application of botulinum toxin treatment in cervical dystonia
N. Pekcan, R. Cakmur, B. Donmez, O. Akyurekli, F. Esmeli, A. Kulan

85 High frequency oscillations (HFOs) in focal dystonia: abnormal patterns sign for the disease
Z. E. Cinmari, S. Meinier, D. P. Schwartz, M. Vidailhet, S. Sangla, B. Renault

86 Globus pallidus deep brain stimulation in adult subjects affected by multisegmental primary dystonia: follow-up after 1 years

87 Different kinematic strategies in handwriting in writer's cramp
M. Balas, L. Gruendlinger, A. Karni, N. Giladi

88 The effect of subthalamic deep brain stimulation on generalized dystonia gait – a quantitative analysis

89 CADASIL presenting as a movement disorder: a clinical study of a chilean kindred
M. D. Miranda, M. Dichgans, A. Slacheksky, F. Urbina, I. Mena, P. Venegas

90 Secondary botulinum toxin treatment failure in only one of identical twin brothers with cervical dystonia – a case study
S. Filipovic, D. Rogers

91 Effects of bilateral pallidal stimulation on cognitive function and mood in patients with primary generalized dystonia
C. Ardouin, B. Pillon, K. Dujardin, A. Pelsislo, P. Vittini, M. Vidailhet

92 Contrasting effect of bilateral dorsal versus ventral pallidal stimulation in primary generalized dystonia
J.-L. Houeto, L. Vercaut, P. Krystkowiak, J. Yelnik, E. Bardinet, M. Vidailhet

93 Long term outcome of bilateral globus pallidus internus (GPI) deep brain stimulation (DBS) for cervical dystonia
S. Hung, P. Piboolnurak, Y.-Y. Poon, A. Lang, A. Lozano, E. Moro

94 Sensori motor coupling is impaired in idiopathic but not in DYT11 dystonia
J. M. Trocillo, M. Vidailhet, G. Lourenco, S. Meunier

95 Chorea as the initial presentation of dopa-responsive dystonia
K. Condefer, A. Deligtisch, S. Bressman, L. Dure, K. Sims, R. Saunders-Pullman

96 Secondary dystonia caused by chronic encapsulated intracerebral hematoma in the right frontal lobe–case report–
N. N.M.N. Kawakami, P. C. Garell

97 Facial recognition in primary focal dystonia
M. Rinnerthaler, T. M. Enneter, C. Bencecke, L. Bartha, W. Poewe, J. Mueller

98 Increased self-reported stress decreases subjective improvement following botulinum toxin injections for cervical dystonia
J. A. Jaglin, C. L. Comella, W. Fan, S. E. Leurgans

99 Sensory abnormalities in unaffected relatives in familial adult-onset primary torsion dystonia: a surrogate phenotype marker?
J. P. O’Dwyer, S. O’Riordan, F. Molloy, R. Saunders-Pullman, S. Bressman, M. Hutchinson

100 Long-term botulinum toxin treatment for focal hand dystonia
Z. Mari, E. Farbman, B. Karp, M. Halet

101 Usefulness of botulinum toxin–A in psychogenic dystonia
A. Ahmed

102 A novel, autosomal dominant, complicated spastic paraplegia in adults with genetic anticipation and severe generalized dystonia in childhood
D. L. Gilbert, N. D. Leslie, T. D. Lipps, L. M. Reed, R. M. Kretchmann

103 A direct comparison of botulinum toxin type A and type B in cervical dystonia: a multicenter, randomized, double blind, parallel study
Dystonia Study Group, C. L. Comella

104 Evaluation of the lemern minerva cervical orthosis for treatment of cervical and upper truncal dystonias

105 Botulinum toxin type B observational study (BOS)
J. Jankovic, C. Hunter, M. Z. Atassi, BOS Research Group
Poster Session 1

106 Identification and treatment of cervical and oromandibular dystonia in acutely brain–injured patients: a pilot study using botulinum toxin

107 Novel expression of a visual “geste antagoniste” in cervical dystonia
J. T. Boyd, T. J. Fries

108 The influence of two different injection strategies in the long–term treatment of cervical dystonia with dysport®
H. Hefter, C. Spiess, M. Moll

109 Successful treatment of a patient with tardive dystonia with stereotactic bilateral GPI deep brain stimulation
F. Hertel, C. Decker, M. Zuchner, M. Pohlau, M. Bettag

110 Successful treatment of hemidystonia due to striatal lesions by bilateral stereotactic GPI – DBS – a report of 2 cases
F. Hertel, C. Decker, I. Wéimar, B. Rohrschneider, M. Zuchner, E. Erken, R. Mandler, M. Bettag

111 Characterization of a rodent model of dystonia
Baron, Rice, Towne, Shapiro

Gene Therapies and Cell–Based Therapies
Poster numbers 112-113

112 Increased microglial activation following neural transplantation in Huntington’s disease: an 11C–(R)PK11195 PET study
Y. F. Tai, N. Pavese, R. A. Barker, S. B. Dunnett, D. J. Brooks, P. Piccini

113 Movement disorder models via viral vector gene transfer to adult rats and targets for gene therapy

Genetics
Poster numbers 114-128

114 A novel mutation (K317M) in the MAPT gene causes a familial form of Parkinsonism–ALS–Dementia complex
J. J. Zarranz, I. Ferrer, E. Lezcano, I. Forcadas, J. Pérez-Tur, B. Atares

115 Frequency of PINK1, Parkin, and DJ–1 mutations in early–onset parkinsonism

116 A case of maternally transmitted juvenile Huntington’s disease (HD) with a very large trinucleotide repeat
S. Papapetropoulos, R. Lopes-Alberola, L. Baumbach, A. Russell, M. A. Gonzalez, C. Ciner

117 Population–based confirmation of the 12q RLS locus in Iceland
A. A. Hicks, D. B. Rye, K. Kristjanson, T. Sigmundsson, A. P. Sigurdsson, I. Eiriksdottir

118 Linkage disequilibrium fine–mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration
A. M. Pittman, A. Myers, H. Chung Fung, J. Hardy, A. Lees, R. de Silva

119 e–sarcoglycan expression in skeletal muscle from patients with myoclonus–dystonia syndrome (MDS)
L. E. Hjermind, J. Vissing, J. E. Nielsen

120 Canine multiple system degeneration locus maps to the interval containing the PARK2 ortholog

121 PINK1 mutations in early–onset and recessive Parkinson’s disease in Norway

122 Metabolic gene polymorphisms in a population–based case control study of Parkinson’s disease
B. Ritz, A. Wahner, C. Glatt, J. Bronstein

123 MRI, motor and cognitive measures correlate with predicted years to disease onset in presymptomatic HD: the predict–HD study
C. A. Ross, K. Biglan, E. Aylward, J. C. Stout, D. R. Langbehn, J. S. Paulsen

124 Huntington’s disease in Russia: ten–years experience of genetic testing and management of affected families
S. A. Klyushnikov, S. N. Illarioshkin, I. A. Ivanova-Smolenskaya, E. D. Markova, P. A. Fedin

125 A large family with idiopathic basal ganglia calcifications not linked to chromosome 14q

126 Lewy body parkinsonism in a large pedigree with 77 Parkin mutation carriers

127 A novel LRRK2 mutation is a common cause of autosomal dominant parkinsonism in families from several European populations
M. Toft, J. Kachergus, I. F. Mata, M. Hulihan, J. Aasly, M. Farrer

128 Glucocerebrosidase gene mutations are not associated with Parkinson’s disease in the Norwegian population
M. Toft, L. Pielsticker, J. Aasly, M. Farrer

Myoclonus
Poster number 129

129 Post–traumatic rhythmic brainstem myoclonus in the outpatient clinic
S. Jain, S. J. Frucht, P. E. Greene

Neuroimaging
Poster numbers 130-149

130 Effects of subthalamic nucleus stimulation on random number generation in Parkinson’s disease
S. Thobois, G. Hotton, S. Pinto, P. Limousin-Dowsey, D. Brooks, M. Jahanshahi

131 Hemispheric lateralization of normal and impaired praxis movements: an event–related functional MRI study
S. Bahillalter, E. Frisman, L. Wheaton, N. Hartori, J. Grafman, M. Halford

132 Magnetic resonance spectroscopy in differential diagnosis of parkinsonism

133 Reduced sensorimotor activation in laryngeal dystonia: a ‘silent event related’ fMRI study
H. Haslinger, P. Erhard, F. Castrop, M. Roettiger, A. O. Ceballos-Baumann

134 Eye–of–the–tiger sign in an asymptomatic patient
J. C. Martinez-Castrillo, J. Masjuan, B. Pilo, P. Simal, J. Martinez-Sanmillan

135 fMRI studies investigating the neural bases of executive dysfunctions in Parkinson’s disease
O. Monchi, M. Petrèdes, J. Doyon, A. P. Strafella

136 Accuracy of 123I–ioflupane (DaTSCAN™) in the diagnosis of patients with clinically uncertain parkinsonism: a two year follow up study
E. Tolosa, T. vander Borght, The CUPS Study Group
Poster Session 1

137 Validation study of cardiac 123I–MIBG scintigraphy in Juntendo University
H. Mochizuki, M. Komine-Kobayashi, K. Sato, Y. Mizuno

C. Scherfler, S. M. Borsch, E. Donnemiller, K. Seppi, G. K. Wenning, W. Poewe

139 3D–SSP SPECT before and after onset of dementia in cases originally diagnosed as Parkinson’s disease
Y. Osaki, Y. Morita, M. Fukumoto, N. Akagi, S. Yoshida, Y. Doi

140 Neuroprotection and natural history in Parkinson plus syndromes study (NNIPPS); results at inclusion of the magnetic resonance imaging (MRI) study in progressive supranuclear palsy (PSP) and multiple system atrophy (MSA)
M. Verin, Y. Rolland, C. Payan, G. Bensimon, The NNIPPS Study Group, UK, Germany

141 In vivo measuring of the topographic profile of putaminal degeneration in the parkinson variant of multiple system atrophy: a diffusion MR study
K. Seppi, M. E.H. Schocke, K. J. Mair, R. Esterhammer, G. K. Wenning, W. Poewe

142 Relationship between non–motor signs and asymmetry of striatal dopamine transporter (DAT) loss in patients with early Parkinson’s diseases measured with SPECT and [123I]Ioflupane–SPECT
I. U. Iisais, S. Hesse, R. Benit, M. Zini, J. Schwarz, A. Antonini

143 Hemifacial spasm: a nerve–vessel–conflict?
M. Kloss, B. Kress, C. Schwark, M. Krause

144 IBZM–SPECT in patients with parkinsonism: a prospective 3 years study
R. Cilia, M. Perini, A. Antonini, C. Gobbo

145 Brain parenchyma sonography differentiates RLS patients from normal–controls and patients with Parkinson’s disease
C. Schmidauer, M. Sojer, H. Stockner, B. Högel, G. Wenning, W. Poewe

146 Dopamine transporter imaging with 123I–FP–CIT SPECT in the differential diagnosis of dementia with Lewy bodies, Alzheimer’s disease and other parkinsonism

147 The amygdala of patients with Parkinson’s disease is silent in response to fearful facial expressions
M. Kawamura, M. Yoshimura, Y. Okun, H. H. Fernandez

148 An MEG/EEG study of tempo production in Parkinson’s disease

149 In vivo session 1

Non-motor Aspects of Movement Disorders
Poster numbers 158-187

158 Excessive daytime sleepiness in Parkinson’s disease patients: a prospective controlled study
V. Dhawan, M. Brand, A. Forbes, S. Thuk, K. R. Chaudhuri

159 Taste sense is abnormal in idiopathic Parkinson’s disease
M. Fernandez, M. Shah, C. Hawkes

160 Smell identification declines from age 36 years and mainly affects pleasant odours
C. Hawkes, M. Shah, A. Fogo

161 Cognitive dysfunction in Machado–Joseph disease
J. Stokholm, J. Nielsen

162 Levodopa does not adversely affect cognition in parkinsonism
S. A. Molloy, J. T. O’Brien, I. G. McKeith, T. Manktelow, K. Wesnes, D. J. Burn

163 Self perception of age in older parkinsonian patients
H. D. Weiss

164 The use of the Parkinson’s disease sleep scale (PDSS) in the assessment of “sleepy” Parkinson’s disease patients with excessive daytime sleepiness (EDS) compared to controls
V. Dhawan, M. Baxi, L. Taurah, M.-J. Medrano, P. Martinez-Martin, K. R. Chaudhuri

165 Mortality and tardive dyskinesia: a long–term study utilizing the national death Index
C. E. Dean, P. D. Thuras

166 Pure autonomic failure: not such a pure entity? A propos of a case with altered striatal uptake on DATscan
Y. Compta, M. J. Marti, P. Paredes, A. Lladó, C. Gaig, E. Tolosa

167 Parkinson's disease and olfactory function: relationship study between 6S-PPP and BAT scores of PD patients
V. Dhawan, G. Brand, A. Forbes, S. Thuk, K. R. Chaudhuri

168 Stalevo dosage improves motor symptoms and elevates levodopa plasma levels in patients with Parkinson’s disease
T. Müller, C. Erdmann, S. Muhlack, D. Bremen, H. Przuntek, D. Wöttila

169 The retention rate, tolerability and efficacy on nighttime symptoms of stallevo as a switch or “add on” therapy in Parkinson’s disease (PD) and restless legs syndrome (RLS)
V. Dhawan, G. Brand, A. Forbes, S. Thuk, K. R. Chaudhuri

170 Switch from Levodopa/Carbidopa to the corresponding Stalevo™ dosage improves motor symptoms and elevates levodopa plasma levels in patients with Parkinson’s disease
T. Müller, C. Erdmann, S. Muhlack, D. Bremen, H. Przuntek, D. Wöttila

171 Cognitiva areo in the treatment of Parkinson's disease
A. Nakatsuka, M. Nagai, H. Yabe, H. Moritoyo, T. Moritoyo, M. Nomoto

172 Tetrabenazine: does prior history of depression preclude this drug as a treatment option?
C. Hunter, K. Vuong, N. Mejia, J. Jankovic

Neuropharmacology
Poster numbers 150-157

150 New onset diabetes in Parkinsonian patients on long–term quetiapine

151 Management of augmentation in patients with restless legs syndrome
C. Trenkwalder, M. Canelo

152 A retrospective “real life” study of pramipexole tolerability in young and old Parkinson’s disease patients attending Movement Disorders clinic
L. Kwan, V. Dhawan, A. Forbes, G. Brand, K. R. Chaudhuri

153 The effect of quetiapine in Parkinson’s disease (PD) psychotic patients: a double blind labeled study of 3 months duration
J. M. Rabey, T. Prokhorov, A. Miniovich, C. Klein

154 Chlorpromazine, a CYP3A4 inhibitor, increased the antiparkinsonian effect of cabergoline, an ergote dopamine agonist in the treatment of Parkinson’s disease
A. Nakatsuka, M. Nagai, H. Yabe, H. Moritoyo, T. Moritoyo, M. Nomoto

155 Relationship between non–motor signs and asymmetry of striatal dopamine transporter (DAT) loss in patients with early Parkinson’s diseases measured with SPECT and [123I]Ioflupane–SPECT
I. U. Iisais, S. Hesse, R. Benit, M. Zini, J. Schwarz, A. Antonini

156 Hemifacial spasm: a nerve–vessel–conflict?
M. Kloss, B. Kress, C. Schwark, M. Krause

157 IBZM–SPECT in patients with parkinsonism: a prospective 3 years study
R. Cilia, M. Perini, A. Antonini, C. Gobbo

158 Brain parenchyma sonography differentiates RLS patients from normal–controls and patients with Parkinson’s disease
C. Schmidauer, M. Sojer, H. Stockner, B. Högel, G. Wenning, W. Poewe

159 Dopamine transporter imaging with 123I–FP–CIT SPECT in the differential diagnosis of dementia with Lewy bodies, Alzheimer’s disease and other parkinsonism

160 The amygdala of patients with Parkinson’s disease is silent in response to fearful facial expressions
M. Kawamura, M. Yoshimura, Y. Okun, H. H. Fernandez

161 An MEG/EEG study of tempo production in Parkinson’s disease

162 Levodopa does not adversely affect cognition in parkinsonism
S. A. Molloy, J. T. O’Brien, I. G. McKeith, T. Manktelow, K. Wesnes, D. J. Burn

163 Self perception of age in older parkinsonian patients
H. D. Weiss

164 The use of the Parkinson’s disease sleep scale (PDSS) in the assessment of “sleepy” Parkinson’s disease patients with excessive daytime sleepiness (EDS) compared to controls
V. Dhawan, M. Baxi, L. Taurah, M.-J. Medrano, P. Martinez-Martin, K. R. Chaudhuri

165 Mortality and tardive dyskinesia: a long–term study utilizing the national death Index
C. E. Dean, P. D. Thuras

166 Pure autonomic failure: not such a pure entity? A propos of a case with altered striatal uptake on DATscan
Y. Compta, M. J. Marti, P. Paredes, A. Lladó, C. Gaig, E. Tolosa

167 Dopamine and the uncoupling of fronto–striatal circuits: from primate experiments to clinical studies
M. Pessiglione, B. Dubois, Y. Agid, L. Tremblay

168 An international multicentre study validating the first screening questionnaire (NMS–quest) for comprehensive assessment of non motor symptoms of Parkinson’s disease
K. R. Chaudhuri, P. Martinez-Martin, A. H.V. Schapira, W. Ondo, K. Sethi, Members of The PD NMS Scale Development Group

169 Cognitive evaluation of a population of patients with Parkinson’s disease with mini mental Parkinson test
P. Chana, T. Purrao, C. Juri, C. Kunstmann, J. Tapia, D. Alburquerque

170 Lateralization of STN DBS’s effects on cognitive control
T. Hershay, D. C. Perantie, S. L. Warren, P. Scheider Gibson, A. Wernle, S. Tabbal
Poster Session 1

171 Follow–up of psychological features in patients treated with botulinum toxin type A
M. Coletti Moja, E. Milano, L. Ostacoli, P. Furlan, L. Durelli

172 Factors associated with drug–induced visual hallucinations in Parkinson's disease
S. Papapetropoulos, A. A. Argyriou, J. Ellul

173 No correlation between the clinical severity of autonomic symptoms (SCOPA–AUT) and electrophysiological test abnormalities in advanced Parkinson's disease
S. Papapetropoulos, A. A. Argyriou, E. Chroni

174 Cognitive functions in MSA–P and MSA–C patients
M. Balas, Y. Balash, N. Giladi, T. Gurevich

175 Olfaction in familial Parkinsonism (FP)
K. Hentschel, Y. Baba, L. N. Williams, R. L. Doty, R. J. Uiti, Z. K. Wszolek

176 Non–motor symptoms frequently herald end–of–dose wearing off in Parkinson's disease
S. H. Isaacson

177 Prevalence of rapid eye movement behavior disorder. A retrospective study based on the review of the clinical records and polysomnography
T. Simuni, A. Huang, C. Hammond, P. Zee

178 Polysomnographic features of REM sleep behavior disorder: differences in REM sleep behavior disorder preceding parkinsonism versus parkinsonism preceding REM sleep behavior disorder
H.-I. Ma, Y.-J. Kim, M.-K. Chu, K.-H. Yu, J.-Y. Kim, B.-C. Lee

179 Time course of developing psychosis–like behaviour in the MPTP–marmoset model of Parkinson's disease

180 A study of the effect of age on the spatial discrimination threshold– normative data for the study of multiplex adult onset primary torsion dystonia families
J. P. O'Dwyer, I. Sheikh, F. Molloy, M. Hutchinson

181 Subthalamic stimulation reduced behavioral disorders induced by basal ganglia dysfunction in monkey

182 Hypersexuality and Parkinson's disease: the role of dopamine replacement
K. J. Klos, J. H. Bower, K. A. Josephs, J. Y. Matsumoto, J. E. Ahlskog

183 Abnormal cardiovascular function distinguishes Parkinson's disease (PD) and multiple systems atrophy (MSA) from other atypical Parkinsonian syndromes (APS)
J. Srinivasan, S. Scala, J. Gutrecht, D. Apetauerova

184 Olfaction, color vision, and quantitative motor testing abnormalities in patients with idiopathic REM sleep behavior disorder
R. B. Postuma, A. E. Lang, J. Massicotte, J. Montplaisir

185 Differences in olfactory dysfunction between sporadic PD and familial Parkinson's disease kindreds by UPSIT subgroup analysis
K. Hentschel, S. Furtado, K. Markopoulou, R. L. Doty, R. J. Uiti, Z. K. Wszolek

186 Adjunctive use of licorice to ameliorate orthostatic hypotension in primary autonomic failure: a case report
H. J. Moore

187 The motor–scanning system: a requirement to justify the high correlation between motor execution and motor imagery
Poster Session 2

Monday, March 7
Poster Viewing: 8:30 a.m. to 5:00 p.m.
Authors Present: 12:30 p.m. to 2:15 p.m.
Abstracts: 188-383

Other Clinical
Poster numbers 188-225

188 Prophylactic treatment of migraine with botulinum toxin A in Koreans: an open–label study
M. Y. Park, K. Y. Ahn

189 Paroxysmal nonkinesigenic dyskinesia responsive to a gluten–free diet
D. A. Hall, J. Parsons, M. A. Leechey, T. A. Benke

190 Management of the extrapyramidal syndrome in acquired chronic hepatocerebral degeneration (ACHD)
S. Papapetropoulos, C. Singer

191 Pramipexole is effective in the treatment of restless legs syndrome (RLS): results of a 6 week, multi–centre, double blind, and placebo controlled study
W. Oertel, K. Stiasny-Kolster

192 Procedimental analyses in movement disorders trials: new approaches in methodological issues
S. G. Echebarria

193 24h relief of restless legs syndrome (RLS) symptoms with once daily pramipexole
B. Högbl, W. Poewe

194 Early and persistent effect of pramipexole in restless legs syndrome (RLS) patients already with the starting dose
W. Oertel, K. Stiasny-Kolster

195 Pramipexole – an effective treatment option in restless legs syndrome (RLS) patients with depressed mood
K. Stiasny-Kolster, W. Oertel

196 Pramipexole significantly improves sleep in patients with restless legs syndrome (RLS)
B. Högbl, W. Poewe

197 Prospective characterization of movement disorders in the Manhattan HIV brain bank project
W. Tse, L. Estanislao, D. Polowetzky, S. Verma, S. Morrello

198 Saccadic eye movements: a useful clinical biomarker in neurodegeneration?
A. Michell, F. Ali, Z. Xu, D. Fritz, S. Lewis, R. Carpenter

199 Gait disturbances in depressed patients: effects of pharmacological therapy
D. Paleacu, A. Shutzman, N. Giladi, T. Herman, J. M. Hausdorff

200 Ancient descriptions of movement disorders. Cathedral El Burgo de Osma (Soria, Spain)
P. J. García Ruiz, J. J. Ruiz, A. García Torres, S. Fanjul

201 A clinical follow up study of the natural history and daytime somnolence in 94 patients with restless legs syndrome (RLS) attending a specialist clinic in the UK
S. Tluk, J. Bland, P. Patel, K. R. Chaudhuri

202 PLM counting in PSG: role of the amplitude
V. Gschlößser, E. Brandauer, H. Ulmer, B. Högbl, W. Poewe

203 Characteristics and antidepressant treatment outcomes of patients with psychogenic Movement Disorder: a naturalistic study
V. Voon, A. E. Lang

204 Ropinirole is an effective, well–tolerated treatment for moderate–to–severe RLS: results of a US study
R. Bogan, M. G. Connolly, G. Rederich

205 Walking is more like catching than tapping: gait in the elderly as a complex cognitive task
J. M. Hausdorff, G. Yogev, S. Springer, E. S. Simon, N. Giladi

206 Predictors of health–related quality of life (HRQL) in US respondents suffering from RLS
L. Gaffney, B. Sherrill, S. Wolowacz, R. P. Allen, M. Connolly

207 Establishing the relationship between RLS severity and work productivity impairment associated with RLS
N. Douzinas, M. Connolly, S. Morris

208 A study of occurrence of restless legs syndrome (RLS) and transferrin receptor assay in an anaemic and non–anaemic multi–ethnic population attending a haematology clinic in inner city, London, UK
A. De Koker, V. Dhawan, F. Stegie, S. Brendemühl, L. Tillyer, K. R. Chaudhuri

209 Screening for cognitive deficits in Parkinson’s disease – which marker relates to disease severity
M. W. Riepe, J. Kasubek, F. Tracik, G. Ebersbach

210 Tolerability of a forced–dose escalating regimen of ropinirole in patients with RLS
M. Kelly, P. Mistry

211 Incidence of dyskinesias in a 10–year naturalistic follow–up of patients with early Parkinson’s disease (PD) initially receiving ropinirole compared with L–dopa
O. Rascol, A. D. Korczyn, F. P. De Deyn, A. E. Lang

212 A segregation analysis of the restless legs syndrome (RLS) using age–of–onset models

213 Continuous intrathecal morphine application in therapy refractory restless legs syndrome (RLS)
J. Haan, A. Koulousakis, D. Lenartz, V. Sturm

214 Four case reports of multiple confusional arousals in a single night mistaken for nocturnal seizures
A. S. Walters, F. Siddiqui, R. Karia, K. Meloff, R. Sachdeo, S. Chokroverty

215 A polymyographic and polysomnographic analysis of painful and painless legs moving toes syndrome

216 Recurrent facial palsy with contralateral hemifacial spasm (19 attacks). An association with HSV1?
S. Viegas, G. Giovanni, K. Mills, J. Bland, M. Samuel

217 Blood pressure variation as a component of autonomic arousal in association with periodic limb movements in sleep in patients with restless legs syndrome
F. Siddiqui, A. S. Walters, X. Ming, S. Chokroverty

218 The effective dose of Ropinirole in the treatment of patients with RLS
D. García-Borreguero, R. Bogan, S. Ritchie

219 Severity of restless legs syndrome in the general community

220 Treatment of higher level gait disturbances with rivastigmine: a pilot study
T. Gurevich, D. Merims, T. Herman, J. M. Hausdorff, N. Giladi

221 Paroxysmal dyskinesias and seizures associated with hemiplegic migraine: a report of three cases
S. A. Schneider, N. P. Quinn, R. Surtees, K. P. Bhatia
<table>
<thead>
<tr>
<th>Poster Session 2</th>
</tr>
</thead>
</table>
| **222** Usefulness of video behavior recording in the diagnosis of restless legs syndrome in young children
Y. Oka, T. Kadotani, H. Kadotani
| **223** The therapeutic reserve: ropinirole in Parkinson's disease (PD)
D. J. Brooks, A. D. Korczyn, O. Rascol
| **224** Hemifacial spasm: a clinical and epidemiological study in 208 patients
C. Colosimo, G. Fabbrini, G. Defazio, M. Bologna, G. Abbruzzese, A. Berardelli
| **225** L-dopa effect on striatal DA shows a different pharmacokinetia and the volume transmitter action of dopamine
| **Parkinson's disease**
Poster numbers 226-344 |
| **226** Gait and freezing in advanced Parkinson's disease: response to pulsatile subcutaneous apomorphine stimulation
J. Vaaonnde, R. Ibáñez, J. M. Flores, G. Maria, C. Fontán, A. Hernández
| **227** Conversion from dopamine agonists to cabergoline: an open-label trial in 202 patients with advanced Parkinson's disease
G. J. Linazasoro
| **228** Body weight determines levodopa associated dyskinesia in Parkinson's disease
J. C. Sharma, M. Vassallo
| **229** Can chronic subthalamic nucleus stimulation induce de novo tremor in Parkinson's disease?
| **230** Dopamine agonist pergolide prevents levodopa–induced quinoprotein formation in parkinsonian striatum and shows quenching effects on dopamine–semiquinone generated in vitro
N. Ogawa, M. Asanuma, I. Miyazaki, F. J. Díaz-Corrales
| **231** Olfactory testing in Parkinson's disease and other movement disorders: correlation with Parkinsonian Severity
| **232** Olfactory dysfunction in Parkinson's disease using the Brief Smell Identification Test: Early AlertTM
K.-S. Lee, J.-S. Kim, J.-Y. Yoo, T.-Y. Lee
| **233** Intake of vitamin E, vitamin C and carotenoids and the risk of Parkinson's disease: systematic review and meta-analysis of observational studies
M. Emmanou, S. S. Gill, A. Samii
| **234** Dissociation of cardinal motor signs in Parkinson's disease
S. B. Koh, E. J. Choi, B. J. Kim, K. W. Park, D. H. Lee
| **235** Cortical dysplasia and hemiparkinson–hemiatrophy syndrome
J. S. Baik, J. Y. Kim, J. H. Park
| **236** Caspase-11, IL–1b and microglial activation mediated LPS–induced substantia nigral dopaminergic neurotoxicity in mice
H. Arai, H. Mochizuki, M. Miura, Y. Mizuno
| **237** Conversion from sustained release carbidopa/levodopa to Stalevo® in Parkinson's disease patients
R. Pahwa, K. E. Lyons
| **238** Parkinson's disease in Africa: a systematic review
N. U. Okubadejo, J. H. Bower, W. A. Rocca, D. M. Maraganore
| **239** Bilateral improvement after unilateral subthalamic nucleus stimulation in a patient with advanced Parkinson's disease
S. J. Chung, S. B. Jeon, J.-H. Im, S. R. Kim, M. C. Lee
| **240** Factors related to quality of life in patients with Parkinson's disease
S. R. Kim, J.-H. Im, S. J. Chung, M. C. Lee
| **241** The tolerability of ACP–103, a 5–HT1A receptor inverse agonist in Parkinsons disease patients
| **242** Long–term benefits of rivastigmine in dementia associated with Parkinson's disease: an open–label extension study
W. Poewe, on Behalf of the EXPRESS Study Group
| **243** Do patient outcomes predict caregiver depressive symptoms?
| **244** Ambulatory automatic assessment of motor fluctuations in Parkinson's disease
N. Keijers, M. Horstink, S. Gielen
| **245** Do Parkinson's disease caregiver proxy reports represent patient self–reports?
| **246** The effects of expiratory muscle strength training program on pharyngeal swallowing in patients with idiopathic Parkinson's disease
A. F. Saleem, C. M. Sapienza, J. C. Rosenbek, N. Musson, M. S. Okun
| **247** Telemedicine for delivery of health care in Parkinson's disease
A. Samii, P. Ryan-Dykes, R. A. Tsukuda, C. Zink, R. Franks, W. P. Nichol
| **248** Effect of continuous duodenal delivery of levodopa (Duodopa®) on self–reported symptoms in patients with severe Parkinson's disease
M. Isacson, K. Bingefors, D. Nyholm, I. S Kristiansen
| **249** Reading in Parkinson's disease and Schizophrenia
Z. S. Adwan
| **250** Long–term efficacy of rasagiline in Parkinson's disease
M. Lew, R. Hauser, H. Hurtig, W. Ondo, J. Wojcieszek
| **251** Early treatment with rasagiline is more beneficial than delayed treatment start in the long–term management of Parkinson's disease
R. Hauser, M. Lew, H. Hurtig, W. Ondo, J. Wojcieszek
| **252** Effect of L–dopa on neuronal activity of subthalamic nucleus (STN) and substantia nigra (SN) in hemiparkinsonian monkeys
D. Isacson, K. Bingefors, D. Nyholm, I. S Kristiansen
| **253** Detection of motor dysfunction in Parkinson's disease (PD) with timed motor tests (TMT)
C. A. Haaxma, G. Born, M. W. Horstink
| **254** Cell death in dopaminergic neurons by MPP+ but not dopamine involves DNA damage and PARP
J. N. Joyce, S. Presgraves, S. Borwege
| **255** Comparison of the metric properties of two specific quality of life measures for Parkinson's disease: PDQ–39 and PDQL. (Ecuadorian Versions)
P. Martinez-Martín, M. Serrano-Dueñas, V. Vaca-Baquero
| **256** Autonomic dysfunctions in Parkinson's disease
J. W. Kim, S. M. Cheon
| **257** Blood–brain barrier dysfunction in Parkinson's disease
| **258** Subchronic treatment with rotegeline prevents synaptic degeneration in the MPTP mouse model of Parkinson's disease
M. Hill, D. K.A. Scheller, E. Bezzard, A. Crossman
A double-blind 2-year extension of the Parkinson–CONTROL study comparing fixed doses of piribedil (150 mg/day) and bromocriptine (25 mg/day) in early combination with L-dopa in Parkinson’s disease (PD)
M. Aguilar, P. Delwaide, G. Linazasoro, P. Cesaro, The Parkinson–CONTROL-2YEAR Study Group

275 Long- and short-duration response to L-dopa in the experimental model of parkinsonism in rats with an unilateral nigrostriatal lesion
C. Marin, E. Aguilar, J. A. Obeso

276 Application of systems performance theory to the UPDRS: preliminary exploration
R. M. Stewart, G. V. Kondraske, M. K. Sanghera

277 Addressing non–motor Impairments in Parkinson’s disease: the new version of the UPDRS

278 Binge eating behavior in Parkinson's disease patients on dopamine agonist therapy
M. J. Nireberg, C. Waters

279 The cost–effectiveness of screening for pre–symptomatic Parkinson’s disease depends on the availability of neuroprotective therapies
A. Siderowf, E. R. Dorsey

280 Pain and Parkinson’s disease
M. Kapasyzi, J. Kruja

281 Clinical and gene analysis of early onset Parkinson's disease in Korean patients

282 Valvular heart disease associated with low cumulative dose of pergolide in the patient with Parkinson's disease
E. J. Chung, W. Y. Lee

283 Neuropsychological deficits in patients with Parkinson's disease and visual hallucinations
B. Ramirez-Ruiz, C. Junque, M. J. Marti, F. Valdeoriola, E. Tolosa

284 Perception and expression of affective speech in Parkinson’s disease

285 Dream content and gender in REM sleep behavior disorder in Parkinson’s disease: preliminary findings
L. L. Borek, R. Kohn, J. H. Friedman

286 Substantia nigra hyperechogenicity correlates with clinical and genetic status
M. Kasten, P. Pramstaller, I. Koenig, J. Hagenah, C. Klein, G. Seidel

287 Multiple independent subthalamic rhythms in patients with Parkinson's disease
G. Foffani, A. Priori, Ardolino, Bossi, Carrabba, Egidi, Locatelli, M. Caputo, Tamma, Baselli, Bianchi, Cerutti, MilanDBS Group Policlinico; SanPaolo; Politecnico

288 The mechanism of action of subthalamic deep brain stimulation: a local field potential study in patients with Parkinson's disease
A. Priori, G. Foffani, M. Ardolino, Bossi, Carrabba, Egidi, Locatelli, M. Caputo, Tamma, Baselli, Bianchi, Cerutti, MilanDBS Group Policlinico; SanPaolo; Politecnico

289 Radicicol induces heat shock protein expression and neuroprotection against rotenone–mediated apoptosis in SH–SY5Y cells
T. Pan, W. Xie, J. Jankovic, W. Le

290 Incidence of falls and fractures in Parkinsonian disorders
D. R. Williams, A. J. Lees
Poster Session 2

292 Motor heterogeneity in Parkinson’s disease: an epidemiological and genetic investigation
C. H. Williams-Gray, T. Follynie, R. A. Barker, S. J. Sawyer

293 Placement of the most efficient contact for treatment of Parkinson’s disease in patients implanted with electrodes in the subthalamic nucleus
M. C. Rodriguez-Oroz, J. Guridi, M. Alegre, F. Alonso, I. Zamarbide, M. Manrique

294 Pesticides exposure and genetic polymorphism of paraoxonase in the susceptibility of Parkinson’s disease
C.-S. Fong, C.-W. Chen, R.-M. Wu

295 Is the impulsivity concept able to explain behavioral effects of subthalamic nucleus stimulation in Parkinson’s disease?
E. Lhommée, F. Torny, C. Ardouin, V. Fraix, P. Krack, P. Pollak

296 Urinary Incontinence in Parkinson’s disease

297 Effect of continuous administration of rotigotine in a rat model of dyskinesia
H. B. Lebsanft, D. K.A. Scheller, M. Heindl, W. Schmidt

298 In vivo measurement of brain monoamine oxidase B (MAO-B) activity after rasagiline treatment, using L-[11C]Deprenyl and positron emission tomography (PET)
N. Freedman, E. Mishani, Y. Krausz, E. Blaugrund, D. Ehrlich, R. Chisin

299 A prospective look at events and lifestyle before the onset of Parkinson’s disease
A. Ascherio, H. Chen

300 Levodopa half-life with additional carbidopa in Parkinson’s disease (PD) patients treated with carbidopa/levodopa and entacapone
S. A. Parashos, C. L. Wielinski, S. M. Peterson, R. C. Brundage

301 Dyskinetic Parkinson’s disease patients (PDP) and subthalamic nucleus (STN) oscillatory activity

302 Tamoxifen, a protein kinase C isomor inhibits, improves levodopa-induced motor complications in animal models of PD
F. Bibbiani, A. Kilaela, C. P.S. Smith, I. Avila, J. D. Oh, T. N. Chase

303 The probability of the diagnosis of Parkinson’s disease can be estimated by comparison of middle–latency auditory evoked responses and transcranial ultrasound
T. Rolan, T. Tice, A. Black

304 Deep brain stimulation in Parkinson’s disease: a meta–analysis of patient outcomes
F. Weaver, K. Follett, M. Stern, K. Hur, D. Ippolito

305 A comparison of best medical therapy and DBS for treatment of PD: baseline characteristics
F. Weaver, K. Follett, M. Stern, K. Hur, D. Ippolito, J. Rothlind

306 Mechanisms of unilateral STN–DBS in patients with Parkinson’s disease: why effects are bilateral?

307 Low dose aripiprazole for the treatment of drug induced psychosis (DIP) in Parkinson’s disease (PD) patients
J. H. Friedman, R. Berman, W. Carson, S. A. Factor, C. G. Goetz, W. Ondo

308 Developing a measure of communicative effectiveness for individuals with Parkinson’s disease (PD)
N. Donovan, C. Velozo, J. Rosenbek, M. Okun, C. Sapienza

309 Motor evoked potentials are less facilitated after contralateral homologous muscle activation in Parkinson’s disease
R. Renganathan, B. J. Sweeney, R. J. Galvin, K. R. Chowdhury, B. McNamara

310 Long–term efficacy of istradefylline in patients with advanced Parkinson’s disease
M. H. Mark, 6002-US-007 Investigator Group

311 Rotigotine transdermal patch (Neupro ®) is efficacious and safe in patients with early–stage, idiopathic Parkinson’s disease, regardless of gender, age, duration and severity of disease. Results of a multicenter, randomized, double–blind, placebo–controlled trial
R. L. Watts, P. A. LeWitt, K. W. Sommerville, B. Boroojerdi

312 Fluctuations in gait force profiles in patients with Parkinson’s disease
R. Bartsch, M. Plotnik, S. Havlin, T. Gurevich, J. M. Hausdorff

313 The relationship between visuo–motor deficits and motor UPDRS in PD
S. Hoehrman, R. Inzelberg

314 Entacapone to tolcapone switch study: multicenter double–blind, randomized, active–controlled trial in advanced Parkinson’s disease
Y. Agid, W. Oertel, S. Factor

315 Entacapone significantly decreases plasma homocysteine levels in levodopa–treated Parkinson’s disease patients
H. Nissinen, J. Ellmen, M. Valteristvo

316 Bilateral coordination of gait is impaired in patients with Parkinson’s disease prone to freezing
M. Plotnik, G. Yogeiv, J. M. Hausdorff, Y. Balash, N. Giladi

317 Selegiline diminishes cardiac sympathetic nerve function by MIBG scintigraphy
M. Yamamoto, T. Tusi

318 Progressive deterioration in quality of life of untreated Parkinson’s patients over 18 months clinical follow up: results from PDLIFE, a multicentre prospective study of 401 patients
K. R. Chaudhuri, L. Taurah, A. Forbes, D. MacMahon, L. Findley, The Members of the PDLIFE Steering Group and Committee

319 Cognitive impairment in Parkinson’s disease correlates with hippocampal atrophy on MRI and temporal–parietal hypoperfusion on rCBF SPECT
J. Slawek, M. Derejko, P. Lass, D. Wieczorek, M. Dubaniewicz

320 Urinary 8–hydroxyguanosine levels as a biomarker for progression of Parkinson’s disease
N. Hattori, S. Sato, Y. Mizuno

321 Abnormalities of short afferent inhibition of cutaneous stimulation in Parkinson’s disease are reversed by dopaminergic drugs
S. Tamburin, A. Fiaschi, D. Idone, P. Manganotti, G. Zanette

322 Cabergoline versus ropinirole as add–on therapy in Parkinson’s disease
Z. Unal, E. Boylu, S. Orhan

323 Smoking and tea consumption delay onset of Parkinson’s disease
D. Volpe, M. Saccavini

324 Does water improve gait in Parkinson’s disease?
R. J. Galvin, K. R. Chowdhury, B. McNamara

325 Six weeks intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: a pilot study
T. Herman, N. Giladi, S. Erllich, L. Gruendlinger, J. M. Hausdorff
Poster Session 2

326 Methylphenidate treatment improves cognitive function and gait performance in patients with Parkinson's disease
E. Uriel, T. Herman, E. S. Simon, J. M. Hausdorff, N. Giladi

327 Expression of heat shock proteins in MPTP-induced mouse model of Parkinson's disease
S. Chen, G. Fan, C. Qi, J. Zhao, G. Lu

328 The block of ubiquitin–proteasome pathway induces cell death and the formation of ubiquitin–immunoreactive inclusions in PC12 cells
S. Chen, H. Yang, B. Li, G. Lu, L. Liang, J. Xu

329 Auditory event–related potentials in Parkinson's disease in relation to memory function: a ten year follow–up study
S. Bostantjopoulou, Z. Katsarou, V. Kimiskidis, E. Peitsidou, A. Kafantari, E. Rossopoulos

330 Postural instability evaluation in Parkinson's disease patients

331 Efficacy and safety of weak electromagnetic fields in Parkinson's disease patients
B. Jasinska-Myga, G. Opala, G. Klodowska-Duda, M. Swiat, A. Sieron, D. Jakubowska

332 Pain in Parkinson's disease
H. A. Hanagasi, S. Akar, H. Gurvit, M. Emre, J. Yazici

333 Sialororrhea: validation of a method for objective measurement and a clinical scale in Parkinson's disease patients
S. Perez Lloret, P. A. Gabriel, M. L. Caivano Nemet, M. Merello

334 Handwriting graphometric analysis in idiopathic Parkinson's disease and parkinsonism
S. Perez Lloret, J. Bradley, M. I. Nouzeilles, M. Merello

335 Clinical correlates of levodopa–induced increases in brain dopamine levels in Parkinson's disease: a 13C–raclopride PET study
N. Pavese, A. H. Evans, Y. F. Tai, A. J. Lees, D. J. Brooks, P. Piccini

336 Entacapone increases and prolongs the central effects of levodopa in the 6–hydroxydopamine–lesioned rat
M. Gerlach, M. van den Buuse, C. Blaha, D. Bremen, P. Riederer

337 Admission of parkinsonian patients to the neurological ward in a community hospital: a 6.5 years screening
J. M. Rabey, T. Prokhorov, A. Miniovich, C. Klein

338 Deep brain stimulation improves temporal discrimination in Parkinson's disease

339 Parkinson's disease patient survey: managing unexpected off episodes
J. A. Cramer, M. Glassman, T. Cronin, V. Rienzi

340 Entacapone but not folate prevents L–DOPA–induced hyperhomocysteinemia
M. Krause, J. G. Okun, Q. Wang, S. Schwaib, N. Henninger

341 Excessive daytime sleepiness and the future risk of Parkinson's disease

342 Levodopa optimized with entacapone decreases periodic limb movements in patients with restless legs syndrome
O. Polo, R. Ylä-Sahra, K. Hirvonen, J. Karvinen, M. Vahteristo, J. Ellmén

343 Prevalence of bladder dysfunction in Parkinson's disease
K. Winge, H. Stimpel, K. K. Nielsen, L. Werdelin

344 Seltracetam (UCB 44212) reduces L–dopa–induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson's disease
A. Michel, P. Ravenscroft, M. P. Hill, E. Bezard, A. R. Crossman, H. Klitgaard

Parkinsonism - Other

Poster numbers 345-383

345 The basal ganglia cholinergic neurochemistry of progressive supranuclear palsy
N. M. Warren, M. A. Piggott, D. J. Burn

346 Adult Westphal variant of Huntington's disease: a video presentation
S. Kamath, N. Bajaj

347 Heterogeneity of vascular parkinsonism: clinical–MRI correlates
O. S. Levin, N. A. Unischenko, D. Y. Olunin

348 Frequency of vascular parkinsonism: a follow–up study of 1.964 patients from a specialized clinic
B. Castano, D. Mateo, S. Gimenez-Roldan

349 Development and validation of the MSA–QoL. A disease–specific health–related quality of life measure for multiple system atrophy
A. E. Schrag, C. Selai, N. Brady, P. Low, J. Hobart, N. Quinn

350 The PSP QoL. (PSP–QoL): a validated, patient–based outcome measure for progressive supranuclear palsy
A. E. Schrag, C. Selai, A. J. Lees, N. P. Quinn, I. Litvan, A. E. Lang

351 MRI correlates of alien leg–like phenomenon in corticobasal degeneration

352 Brainstem surface measurement by MRI is useful to differentiate idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP)
Y. Rolland, M. Verin, C. Payan, G. Bensimon, NNIPPS Study Group

353 Dopamine transporter imaging in the differential diagnosis between vascular parkinsonism and idiopathic Parkinson's disease
J.-M. Kim, S. E. Kim, S.-J. Kwon, M.-H. Yang, E.-K. Park, J. Eo

354 The relationship between histopathological features of progressive supranuclear palsy and disease duration
K. A. Josephs, D. W. Dickson

355 Motor progression of multiple system atrophy (MSA): a prospective study using the unified MSA rating scale (UMSARS)
F. Gejer, J.-P. Ndayisaba, M. Stampafer-Kountchev, K. Seppi, W. Poewe, K. Wening, on behalf of the European MSA-Study Group (EMSA-SG)

356 Staging disease severity in Movement Disorder tauopathies: brain atrophy separates progressive supranuclear palsy from corticobasal degeneration

357 Progressive parkinsonism in a welder due to manganese intoxication
S. Özekmekçi, S. Ertan, G. Kiziltan, H. Apaydın, D. Djakisbaeva, I. Sayılı

358 Health related quality of life (HR–QOL) in multiple system atrophy (MSA)
G. K. Wening, F. Gejer, J.-P. Ndayisaba, M. Stampafer-Kountchev, K. Seppi, W. Poewe, on Behalf of the European MSA Study Group (EMSA-SG)
Poster Session 2

359 Basal ganglia cryptococcal abscesses presenting with parkinsonism in a non-immunocompromised patient
S. T. Camargos, A. L. Teixeira, F. Cardoso

360 Atypical Wilson disease presenting hemiparesis as an initial manifestation
J. Y. Youn, W. T. Yoon, E. J. Chung, W. Y. Lee

361 Subclinical REM sleep behavior disorder (RBD) in two patients with corticobasal degeneration (CBD)
E. M. Gatto, C. Uribe Roca, O. Martinez

362 LRRK2/PARK8 in families with parkinsonism

363 The effects of rapid repetitive transcranial magnetic stimulation over the posterior fossa on gait in patients with multiple system atrophy
Y. Balash, T. Gurevich, T. Herman, R. Djaldetti, S. Hassin-Baer, N. Giladi

364 Restless legs in idiopathic Parkinson’s disease
C. M. Peralta, E. Wolf, K. Seppi, G. K. Wenning, B. Hogl, W. Poewe

365 Intra-rater reliability of the unified multiple system atrophy rating scale (UMSARS)
K. J. Mair, F. Tison, O. Rascol, N. P. Quinn, G. K. Wenning, European MSA Study Group

366 Atypical familial PSP
M. H. Anca, M. Loberboim, D. Lev

367 Association of dementia with parkinsonian signs in the elderly general population in central Spain
M. Pondal, F. Corral, T. Del Ser

368 Elevated titers of anti-thyroid antibodies in patients with multiple system atrophy, unexpected observation
B. Shihman, N. Giladi, T. Gurevich

369 Frequency and nature of dystonia in MSA and PSP
C. H. Schrader, T. Weiskirch, S. D. Suessmuth, B. Herting, The NNIPPS-Study-Group

370 Diagnostic value of 123I–Ioflupane SPECT in psychogenic parkinsonism
C. Gaig, F. Nakamae, M. J. Martí, P. Paredes, F. Valdeoriola, E. Tolsa

371 Motor fluctuations in juvenile parkinsonism – management dilemma
A. B. Shah, P. M. Wadia, R. B. Baviskar, R. Ramdass

372 Can the clonidine–growth hormone (GH) stimulation test (CGHST) distinguish multiple system atrophy and Parkinson’s disease early in the course of illness?

373 Movement Disorders associated with fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP-17)
M. M. Wickremaratchi, H. R. Morris

374 Multiple system atrophy genitourinary type: an emerging entity?
P. V. Swaminath, A. Mohan, M. Ragothaman, N. Sarangmath, C. J. Mathias, U. B. Muthane

375 The pathological basis of disproportionate antecollis in multiple system atrophy

376 Delayed onset of freezing of gait following the bilateral necrosis of the globus pallidus

377 Deep brain stimulation of subthalamic nucleus can improve parkinsonism symptoms in sinemet non-responsive patients
O. V. Kopyov, R. F. Young, R. M. Hutchman, D. B. Jacques

378 Hemiparkinsonism and facial dyskinesia in a patient with a contralateral mesencephalic cyst
S. Zats, S. L. Lewis, C. L. Comella

379 Parkinsonism induced by bupropion
F. Grandas, L. Lopez-Manzanares

380 Gait and balance assessment in parkinsonian disorders
S. N. Asher, K. D. Vuong, J. Shahed, A. L. Diamond, J. Jankovic

381 Gait assessment in parkinsonism, dementia and normal ageing
A. Bernal, G. Arango, A. Granados, W. Fernandez

382 Extrapyramidal symptoms in a group of Italian dental laboratory technicians
E. Fabrizio, N. Vanacore, G. Di Brigida, G. Meco

383 Valvular heart disease in Parkinson’s disease versus controls – an echocardiographic study–
C. M. Peralta, E. Wolf, K. Seppi, H. Alber, S. Mueller, W. Poewe
74

Poster Session 3

Tuesday, March 8

Poster Viewing: 8:30 a.m. to 5:00 p.m.
Authors Present: 12:45 p.m. to 2:30 p.m.
Abstracts: 384-592
Parkinson's disease

Poster numbers 384-500

384 Sporadic Parkinson's disease: correlations between Hoehn and Yahr stages, cognitive status, and the neuropathological stages of a newly proposed staging protocol
U. Rueb, K. Del Tredici, E. Jansen Steur, R. de Vos, H. Braak

385 Entacapone provides additional benefit to Parkinson's disease patients with motor fluctuations treated with levodopa and selegiline
J. Larsen, H. Nissinen, M. Vahteristo

386 Repetitive transcranial magnetic stimulation in advanced Parkinson's disease: effects on cortical excitability, freezing of gait and executive functioning
I. Rektorova, S. Sedlackova, S. Telecka, A. Hlubocky, I. Rektor

387 Freezing of gait has significant effect on quality of life in Parkinson's disease
O. Moore, C. Peretz, N. Giladi

388 Effect of 4-week training with audio–visual cues on sit–to–stand in Parkinsonian patients
M. K. Mak, C. W. Hui-Chan

389 Gender representation among those donating brains for Parkinson's disease research
A. Rajput, M. L. Rajput

390 Extrapyramidal gait slowing predicts incident dementia in the Sydney older persons study: where is the brain lesion in motor slowing?

391 Visuospatial impairment or executive dysfunction do not contribute to falling in Parkinson's disease

392 Turning during walking in Parkinson's disease: footstep patterns
F. E. Huxham, R. Iansek, M. E. Morris, R. Baker

393 Cognitive decline parallels motor progression and not disease duration in Parkinson patients

394 An abbreviated wearing–off patient questionnaire (WOPQ): sensitivity analysis
M. Stacy

395 Smoking among patients diagnosed with Parkinson's disease: is it neuroprotective?
S. Papapetroupolos, J. M. Villar, C. Singer, J. Gonzalez, D. C. Mash

396 Orthostatic hypotension in Parkinson's disease and multiple system atrophy
K. Sergey, L. Igor, O. Miroslav

397 Heat shock protects against alpha synuclein–triggered apoptosis in a yeast model of Parkinson's disease
T. R. Flower, C. A. Froelich, S. N. Witt

398 Family aggregation and geographical clustering of LRRK2 associated Parkinson's disease in central Norway

399 A new self-assessment patient card for early detection and management of Parkinson's disease fluctuations: the PRECOCE survey
J. P. Azulay, F. Durif, R. Rogez, C. Tranchant, I. Bourdeix, K. Rerat

400 Evaluation of liver–related adverse events with tolcapone: a review of 7–years of worldwide safety data
R. Watts, G. Kricorian

401 Plasma homocysteine levels in L–dopa treated PD patients with cognitive dysfunctions: a causal link?
S. Zoccolella, C. Dioma, A. Fraddosio, R. Mastronardi, I. Russo, S. Lambertti

402 Long term follow up of fluctuating Parkinsonians on apomorphine continuous subcutaneous infusion by PUMP
J.-E. G.M. Vanderheyden

403 Mental loading increases gait asymmetry and stride–to–tride variability in patients with Parkinson's disease
G. Yoge, N. Giladi, S. Springer, J. M. Hausdorff, C. Peretz, M. Plotnik

404 Results from a 2–year centralized tolcapone liver enzyme monitoring program
M. F. Lew, G. J. Kricorian

405 Entacapone decreases axial symptoms and tremor in levodopa–treated Parkinson's disease patients experiencing wearing–off symptoms
D. J. Brooks, M. Kuoppamäki, M. Vahteristo

406 High frequency activity in the subthalamic nucleus and substantia nigra reticulata in Parkinson's disease
P. Novak, J. Nazzaro, S. Daniluk, M. Diggin, S. L. Ellias

407 Validation of the freezing of gait questionnaire (FOG–Q) for patients with Parkinson's disease
N. Giladi, Y. Tal, R. Meiron, O. Rascol, D. Brooks, E. Melamed

408 Elevated homocysteine level in patients treated with levodopa M. Yilsen, T. Aydemir, H. Meral, F. Ozer, L. Hanoglu, S. Cetin

409 Impact of pramipexole on mood and initiative in early Parkinson's disease
K. Kieburtz, M. Romer, M. McDermott, C. Kamp, Parkinson Study Group

410 New levodopa/carbidopa/entacapone tablets (Stalevo®) provide better quality of life for Parkinson's disease patients and save costs to the society
L. Findley, H. Turunen, M. Apajásalo, A. Lees

411 Stride variability in Parkinson's disease
E. Ishishina, P. Novak

412 Spectral analysis of the subthalamic nucleus responses to passive movement in Parkinson's disease
P. Novak, S. E. Ellias, S. Daniluk, J. Nazzaro

413 Expression pattern of synphilin–1 and parkin in control and Parkinson's disease

414 Extrapyramidal gait slowing predicts incident dementia in the Yahr stages, cognitive status, and the neuropathological stages of a newly proposed staging protocol
U. Rueb, K. Del Tredici, E. Jansen Steur, R. de Vos, H. Braak

415 Drug holiday revisited – amantadine infusions for motor complications in levodopa treated Parkinson's disease
M. F. Lew, G. J. Kricorian

416 New levodopa/carbidopa/entacapone tablets (Stalevo®) provide better quality of life for Parkinson's disease patients and save costs to the society
L. Findley, H. Turunen, M. Apajásalo, A. Lees

417 Validation of the freezing of gait questionnaire (FOG–Q) for patients with Parkinson's disease
N. Giladi, Y. Tal, R. Meiron, O. Rascol, D. Brooks, E. Melamed

418 Elevated homocysteine level in patients treated with levodopa
M. Yilsen, T. Aydemir, H. Meral, F. Ozer, L. Hanoglu, S. Cetin

419 Impact of pramipexole on mood and initiative in early Parkinson’s disease
K. Kieburtz, M. Romer, M. McDermott, C. Kamp, Parkinson Study Group

420 New levodopa/carbidopa/entacapone tablets (Stalevo®) provide better quality of life for Parkinson's disease patients and save costs to the society
L. Findley, H. Turunen, M. Apajásalo, A. Lees

421 Stride variability in Parkinson's disease
E. Ishishina, P. Novak

422 Spectral analysis of the subthalamic nucleus responses to passive movement in Parkinson's disease
P. Novak, S. E. Ellias, S. Daniluk, J. Nazzaro

423 Expression pattern of synphilin–1 and parkin in control and Parkinson's disease

424 Drug holiday revisited – amantadine infusions for motor complications in levodopa treated Parkinson's disease
A. Friedman, D. Koziorowski

425 The prevalence of movement disorders in the general community
G. K. Wenning, K. Seppi, J. Mueller, M. Koellensperger, S. Kiechl, J. Willeit

426 Beneficial interactions between grapefruit juice and dopamine agonists in patients with Parkinson's disease
M. Nagai, A. Nakatsuka, H. Yabe, H. Moritoyo, T. Moritoyo, M. Nomoto
Poster Session 3

417 Bilateral subthalamic nucleus deep brain stimulation in Parkinson's disease and mood disorders
I. Chereau-Boudet, P.-M. Llorca, J.-J. Lemaire, F. Durif

418 Memantine in Parkinson’s disease dementia (PDD)—clinical experience
C. G. Fox, G. Umemoh, M. Samuel, B. Barbara, M. Neil

419 Associative plasticity of motor cortex in Parkinson’s disease
S. Bagnato, R. Agostino, N. Modugno, A. Quartrarone, A. Berardelli

420 Behavioural and psychiatric outcome in patients with Parkinson’s disease and subthalamic stimulation
P. Piombo, E. Wolf, T. Benke, K. Kramer-Reinstadler, G. K. Wenning, W. Poewe

421 Axial myopathy in Parkinsonian disorders
M. Sawires, K. Seppi, J. Wanschitz, W. N. Loscher, G. K. Wenning, W. Poewe

422 Parkinson’s disease, apathy, and attentional process: an event-related potentials study

423 Does cardiovascular dysautonomia occur early in Parkinson’s disease and increase with its severity?
M. Ragothaman, N. Sarangmath, S. Koshp, P. V. Swaminath, C. J. Mathias, U. Muthane

424 Selegiline reduced tremor and bradykinesia in levodopa–treated Parkinson’s disease patients in a long-term randomized double-blind study
S. E. Pål Hägen and the Swedish Parkinson Study Group

425 Prevalence of Parkinson’s disease in the Parsee (Zoroastrian) community
M. H. Bhatt, N. A. Chhaya, S. R. Vaidya, N. Quinn, K. P. Bhatia

426 Reaching kinematics not matched to postural context by PD patients
J. Doan, I. Q. Whishaw, S. M. Pellis, O. Suchowersky, L. A. Brown

427 Using wearable technology to monitor motor fluctuations in Parkinson’s disease
D. M. Sherill, R. Hughes, S. S. Salles, M. Akay, D. G. Standaert, P. Bonato

428 The influence of fixation offset on predictive and reflexive saccades in Parkinson’s disease

429 Rater – blinded, prospective study comparing the therapeutic benefit of clozapine vs. quetiapine on psychosis in patients with Parkinson's disease
D. Merims, H. Shabtai, M. Balas, C. Peretz, N. Giladi

430 Small interfering RNA (siRNA) targeting the PINK1 induces apoptosisin human SH–SV5Y cells
H. Deng, J. Jankovic, T. Pan, W. Xie, W. Le

431 The efficacy of quantitative gait analysis by GAITRite system in evaluation the parkinsonian bradykinesia
S.-L. Chien, C.-C. Liang, Y.-H. Pan, Y.-C. Chou, S.-Z. Lin, S.-Y. Chen

432 An integrated rehabilitation approach to Parkinson’s disease: learning big & loud

433 To compare clinical improvement in young and old Parkinson’s disease after STN DBS
P. K. Doshi, N. A. Chhaya, M. H. Bhatt

434 Bowel movement frequency in mid–life and substantia nigra neuron counts

435 Treatment patterns for Parkinson’s disease in the Pacific Northwest Veterans Health Network
M. A. Brodsky, R. Bourdage, K. Swartztrauber

436 Parkinson’s patients with deep brain stimulation: effects of education and intelligence on depressive symptoms

437 Efficacy and tolerability of electroconvulsive therapy in advanced Parkinson’s disease with symptoms not responsive to levodopa. A pilot study
F. Valdecioli, L. Pintor, L. Rami, M. J. Marti, E. Tolosa, M. Bernaldo

438 Effects of physical therapy on gait and balance in Parkinson’s disease
A. A. Zylstra, A. F. Griffith, A. D. Mosley, B. C. Leis

439 Association of olfactory dysfunction with risk of future Parkinson’s disease

440 Psychogenic Parkinsonism: combination of clinical, electrophysiological and [123I] Ioflupane SPECT Scan explorations improves diagnostic accuracy
S. Benaderette, P. Zanotti Fragonara, E. Aparris, C. Nguyen, J. M. Trocicino, M. Vidalheter

441 Paraspinal muscle asymmetry in Parkinson’s disease
W. G. Onno, H. Haykal

442 Physical activity performance and quality of life in individuals with early stage Parkinson’s disease and their partners
C. C. Basile, C. L. Curtis, H. E. David

443 Melatonin treatment for sleep–related symptoms in patients with Parkinson’s disease

444 Retinal pigment epithelium (RPE) cells provide neurotrophic effect on striatal neurons
E. Erbe, B. McKay, P. S. Patel, J. Kennedy, S. L. Xiang, S. J. Sherman

445 Retinal pigment epithelium (RPE) cells provide neurotrophic effect on midbrain dopaminergic neurons
P. S. Patel, B. Goodman, B. McKay, E. Erbe, J. Kennedy, S. J. Sherman

446 Co–expression of dopamine–1 and dopamine–2 receptor subtypes in striatal neurons
J. Kennedy, P. S. Patel, E. Erbe, T. Falk, S. J. Sherman

447 A functional reach task and cognitive impairment are associated with falls in Parkinson's disease
K. M. Biglan, J. R. Williams, S. Grill, T. Augustin, S. Bassett, L. Marsh

448 D1 receptor hypersensitivity in Parkinson's disease is related to persistent increase of the olfactory type G–protein alpha–subunit in the striatum
Poster Session 3

449 Characterization of behavioral and neurodegenerative changes induced by convection–enhanced delivery of 6–hydroxydopamine into the rat striatum
A. G. DiLella, E. V. Lis, K. W. Jones, T. T. Cao, F. J. Hess, G. R. Seabrook

450 Changes in vowel acoustics following intensive voice treatment in Parkinson's disease: implications for speech intelligibility
J. Spielman, L. Ramig, C. Fox

451 Rasagline does not promote tyramine pressor responses
J. A. de Marcaida, Parkinson Study Group

452 Correlation between punding and dyskinesias in Parkinson's disease (PD)
L. Silveira-Moriyama, A. H. Evans, R. Katzenschlager, A. J. Lees

453 5–yr follow–up REAL–PET study in patients with early Parkinson's disease (PD) initially receiving ropinirole or L–dopa
R. L. Watts, A. Lang, O. Rascol, W. Poewe, A. J. Stoessl, R. Hauser

454 Technology supported speech treatment for Parkinson's disease

455 Motor cortical excitability appears to differ between the tremor and the akinetic form of Parkinson's disease
L. Barbini, P. Sauleau, Y. Percon, C. Magne, N. Alexandri, P. Damier

456 Increased switch costs in Parkinson's disease reflect deficient endogenous preparation in a set shifting paradigm
C. Daniels, K. Witt, J. Kernbichler, V. Daniel, S. Rehm, G. Deutschl

457 Chronic pain in Parkinson's disease: preliminary results of the DOPAMIP study, a cross–sectional survey in south–west of France
L. Negre-Pages, H. Grandjean, O. Rascol, DOPAMIP Study Group

458 Patterns of damage within magnocellular and koniocellular pathways in Parkinson's disease
A. Freire, C. Januario, F. Silva, F. Regateiro, P. Faria, M. Castelo-Branco

459 Dynamic properties of saccadic intrusions in Parkinson's disease: a preliminary study

460 Survival among veterans with Parkinson's disease
D. L. White, E. C. Lai, S. Moore

461 Does the type of physician seen impact medications prescribed?
S. Oswald, M. A. Coles, H. Shill

462 Abnormal motor cortex plasticity in Parkinson’s disease: evidence in rodents and humans
F. Battaglia, A. Quarrarone, S. Bagnato, V. Rizzo, L. Morgante, P. Girlanda

463 Acoustic changes following behavioral speech treatment to train increased loudness in people with idiopathic Parkinson’s disease
L. A. Will, J. Spielman, L. O. Ramig

464 Excessive daytime sleepiness and on–road driving performance in individuals with Parkinson's disease
M. Amick, A. D’Abreu, M. Moro-de-Casillas, K. Chou, B. Ott

465 Surgical microtrauma as a predictor of neuropsychological change following unilateral pallidal and subthalamic DBS
J. C. Rothblind, R. W. Cockshott, J. A. Walker, P. A. Starr, W. J. Marks, Jr., P. S. Larson

466 Learning big™, efficacy of a large–amplitude exercise approach for patients with Parkinson's disease – bradykinesia to balance
B. G. Farley, G. F. Koshtland

467 Entacapone provides benefit to Parkinson’s disease patients with motor fluctuations treated with levodopa and dopamine agonists: an analysis of four randomized trials
M. Kuoppamäki, M. Vahteristo, K. Kieburzt

468 Rasagline is effective and well tolerated in the treatment of Parkinson's disease (PD) patients with levodopa–related motor fluctuations receiving other adjunctive therapy
L. Elmer

469 Improving speech intelligibility in patients with Parkinson's disease and dysarthria using SpeechEasy®, a speech fluency–enhancing device
E. Q. Wang, L. Verhagen Metman, M. H. de Vries

470 Depression subtypes are associated with motor subtypes of Parkinson's disease
P. Kavanagh, S. J. Ferrando, J. Godbold, M. Veytsman, A. Di Rocco

471 Pizza, mint and licorice: smell testing in Parkinson's disease in a UK population
L. Silveira-Moriyama, D. Williams, R. Katzenschlager, A. J. Lees

E. C. Lai, S. Moore

473 Comparison of psychosis and sleep in hallucinating subjects with dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD) and without dementia (PDND)
J. G. Goldman, V. K. Hinson, C. G. Goetz, S. E. Leurgans

474 Density of small fibers in Parkinson’s disease and multiple system atrophy
P. Novak, Wtren, J. Bhawan

475 Homozygous 1311G>A PINK1 mutation in a patient with Parkinson disease, psychiatric disorder, and apparently dominant transmission
C. Cristuolo, G. Volpe, A. De Rosa, A. Filla, E. M. Valente, G. De Michele

476 Rescue dose use: enhanced desire for drug or avoiding ‘aversive’offs’
D. Ortraviani, A. Evans, R. Katzenschlager, A. Lees

477 Levodopa prevents falls in the absence of visual input in Parkinson's disease: case report
F. J. Revilla, G. Shahad, M. Gartner, C. Cox, A. Bhattacharya

478 Effect of deep brain stimulation on posture control in Parkinson’s disease
S. Mulligan, N. Krishnamurthi, P. Mahant, J. Samanta, J. Abbas

479 Neuropathological study 16 years after autologous adrenal medullary transplantation in a Parkinson's disease patient
K. Kompoliti, Y. Chu, K. M. Shannon, C. G. Goetz, J. H. Kordower

480 Electronic diaries to assess motor fluctuations and dyskinesias in Parkinson's disease patients
L. Correia Guedes, B. Marino, J. Ferreira, M. M. Rosa, A. Noronha, C. Sampaio

481 The frequency and causes of falls in moderately affected Parkinson's disease patients
A. Szczudlik, M. Rudzinska, S. Bukowczan, M. Marona, J. Furgai, M. Michalski

482 Regular dopaminergic therapy cross–sensitises to the effects of methylphenidate
A. H. Evans, A. D. Lawrence, A. J. Lees

483 Tolerability of subcutaneous apomorphine in Parkinson's disease patients not taking trimethobenzamide as prophylaxis against gastrointestinal adverse events
R. B. Dewey
499 InSPECT: an Investigation of the effects of short–term treatment
498 Olfactory identification testing in combination with dopamine
497 Implications of motor fluctuations in Parkinson’s disease
496 Olfactory identification testing in combination with dopamine
495 InSPECT: an investigation of the effects of short–term treatment
494 Implications of motor fluctuations in Parkinson’s disease
493 Treatment of memory and psychosis in patients with Parkinson’s
492 Can patients with PD assess their own disease severity? A self–
491 Parkinson’s disease and apolipoprotein E genotype: possible
490 Repetitive transcranial magnetic stimulation (rTMS) and
488 Subcutaneous apomorphine in patients with advanced
487 Relationship among psychiatric, motor and cognitive function–
486 Reduced NURR1 gene expression affects expression of
dopaminergic phenotypic markers and Parkinson’s disease–related
485 Orolingual masticatory tardive dyskinesia induced by levodopa
in a parkinsonian patient
484 InSPECT: an Investigation of the effects of short-term treatment

Poster Session 3

484 Depression and Parkinson’s disease
E. Fabrizio, N. Vanacore, R. Martani, M. Colasanti, G. Brigida, G. Meco
485 Orolingual masticatory tardive dyskinesia induced by levodopa
in a parkinsonian patient
C. C. Meyniel, P. P. Damier
486 Reduced NURR1 gene expression affects expression of
dopaminergic phenotypic markers and Parkinson’s disease–related
genes
H. Deng, J. Jankovic, W. Xie, T. Pan, W. Le
487 Relationship among psychiatric, motor and cognitive functioning
in non–demented individuals with Parkinson’s disease
488 Subcutaneous apomorphine in patients with advanced
Parkinson’s disease: ECG results from aPO302
J. H. Sherry, P. B. Bottini, G. A. Burkhart
489 Electrocardiographic assessment of subcutaneous apomorphine
in patients with advanced Parkinson’s disease
J. H. Sherry, P. B. Bottini, G. A. Burkhart
490 Repetitive transcranial magnetic stimulation (rTMS) and
dyskinesias in Parkinson’s disease – clinical and physiological
effects of four daily sessions of slow (1Hz) rTMS
S. Filipovic, P. Heywood, J. Rothwell, K. Bhatia
491 Parkinson’s disease and apolipoprotein E genotype: possible
association?
492 Can patients with PD assess their own disease severity? A self–
assessment study of the Hoehn & Yahr Scale
R. Katzenschlager, N. Russo, M. Jahnshani, N. Quinn, A. L. Lees, A. Schrag
493 Treatment of memory and psychosis in patients with Parkinson’s

disease
S. H. Isaacson, D. L. Kreitzman
494 Implications of motor fluctuations in Parkinson’s disease
patients on chronic therapy (IMPACT): results from an
observational registry
J. Anthony, J. Spears, B. Van Lunen
495 InSPECT: an investigation of the effects of short–term treatment
with primapexole or levodopa on [123I] b–CIT and SPECT
imaging in early Parkinson disease
D. Jennings, R. Tabamo, J. P. Seibyl, K. Marek, The INSPECT
Study Group
496 Olfactory identification testing in combination with dopamine
transporter (DAT) imaging as an early marker for Parkinsonian
syndrome
D. Jennings, R. Tabamo, J. P. Seibyl, K. Marek
497 Implications of motor fluctuations in Parkinson’s disease
patients on chronic therapy (IMPACT): results from an
observational registry
Anthony, Spears, Van Lunen
498 Olfactory identification testing in combination with dopamine
transporter (DAT) imaging as an early marker for Parkinsonian
syndrome
Jennings, Tabamo, Seibyl, Marek
499 InSPECT: an Investigation of the effects of short–term treatment
with primapexole or levodopa on [123I] B–CIT and SPECT
imaging in early Parkinson disease
Jennings, Tabamo, Seibyl, Marek, the INSPECT Study Group

Poster Session 3

500 The Journey of Parkinson disease patients, the quality of life and
the role of the Clinical nurse specialist
Lachance

Spatiocity

Poster numbers 501-504

501 Functional stereotactic operations for treatment of residual
symptoms after stroke
A. Koulousakis, D. Lenartz
502 Correction of low spastic paraparesis by spinal cord stimulation
V. A. Shabalov, A. V. Dekopov, E. M. Troshina, A. A. Tomsly
503 Sonography in the '12Plus– concept’ with botulinum toxin A
(BOTOX®) in children with cerebral palsy – accuracy, safety
and secondary non–response
S. Berweck, A. S. Schroeder, S.-H. Lee, I. Gutmann, A. Schwerin,
F. Heinen
504 The impact of intensive voice treatment (LSVT) on speech
intelligibility in children with spastic cerebral palsy
C. M. Fox, C. Boliek, L. O. Ramig

Surgical Therapy

Poster numbers 505-556

505 The use of two DBS leads for the treatment of post–traumatic
and Multiple Sclerosis tremor
Rodriguez, M. S. Okun
506 Management of referred DBS failures
M. S. Okun, M. Tagliati, M. Pourfar, R. L. Rodriguez, H. H.
Fernandez, K. D. Foote
507 Acute blinded stimulation of the anterior limb of the internal
capsule and nucleus accumbens region: side effects and benefits
W. Knight, N. A. Shapira, K. D. Foote, U. Springer, W. Goodman,
M. S. Okun
508 Are mild MRI abnormalities predictive of outcome after bilateral
subthalamic stimulation for Parkinson’s disease?
K. E. Lyons, S. B. Wilkinson, R. Pahwa
509 Functional outcome after subthalamic nucleus deep brain
stimulation (STN–DBS) to treat Parkinson’s disease (PD): 6
months follow–up
Balcut
510 Accuracy of frameless stereotactic placement of deep brain
stimulators: comparison to the Leksell frame
K. L. Holloway, J. M. Henderson, S. E. Gaede, J. M. Rosenow,
MD
511 Unilateral deep brain stimulation in the subthalamic nucleus for
advanced Parkinson’s disease
N. R. Whaley, R. E. Wharen, J. D. Putzke, J. A. Wilden, R. J. Uitti
512 Behavioral and cognitive decline after subthalamic stimulation
in a patient with Alzheimer’s and Lewy body dementia
mimicking Parkinson’s disease
H. Friedman
513 Worsening of Parkinsonism by stimulation outside the
subthalamic nucleus
514 Uneven benefit observed from parkinsonian patients who
underwent subthalamic stimulation
Lin
515 Unilateral vs. bilateral subthalamic nucleus deep brain stimulation in Parkinson disease: preliminary results from staged bilateral stimulator implantations
A. Samii, V. E. Kelly, J. C. Slipp, A. Shumway-Cook, R. Goodkin

516 Deep brain stimulation in multiple system atrophy: a clinicopathological report
V. Talmant, P. Esposito, B. Stilstart, M. Mohr, C. Tranchant

517 Effect of deep brain stimulation in a human with MPTP-induced Parkinsonism
C. W. Christine, W. J. Langston, R. S Turner, P. A. Starr

518 Meta-analysis of outcome of deep brain stimulation for dystonia
K. L. Holloway, M. S. Baron, R. E. Brown

519 Long-term evaluation of quality of life after DBS for advanced Parkinson's disease
J. Vollmann, for the Deep-Brain Stimulation for Parkinson's Disease Study Group

520 Globus pallidus deep brain stimulation in dystonia
A. L. Diamond, J. Shahed, S. Azker, K. Dat Vuong, J. Jankovic

521 Pyramidal tract side effects induced by deep brain stimulation of the subthalamic nucleus
G. Tommasi, P. Krack, V. Fraix, A. L. Benabid, J. F. Le Bas, P. Pollak

522 Subthalamic nucleus stimulation and apraxia of eyelid opening in patients with Parkinson's disease
G. Tommasi, P. Krack, V. Fraix, A. Batir, A. L. Benabid, P. Pollak

523 Deep brain stimulation in Parkinson's disease following fetal nigral transplantation
J. Herzog, O. Pogarell, W. H. Oertel, H. M. Mehdorn, G. Deuschl, J. Vollmann

524 Severe aggravation of tremor after thalamic DBS in tremor-dominant PD
D. Apetauercrova, J. Joseph, T. Norregaard, D. Tarsy

525 Long-term follow-up after subthalamic DBS for Parkinson's disease
A. Landi, A. Antonini, C. Ceresa, M. Parolin, F. Vergani, C. Mariani

526 Clinical–functional correlates of verbal fluency decrease in PD patients who underwent DBS stimulation: an eCD–SPET study
S. Chiara, D. De Gaspari, C. Roberto, M. Giorgio, B. Riccardo, A. Angelo

527 Deep brain stimulation of bilateral subthalamic nucleus decreases the cardiac sympathetic modulation in Parkinson's patients during acute stage

528 Tourette disorders and deep brain stimulation
J.-L. Houeto, C. Karachi, L. Mallet, B. Pillon, P. Damier, Y. Agid

529 Ballistic end of dose dyskinesia in advanced Parkinson's disease (PD) can be eliminated by bilateral STN or GPi deep brain stimulation (DBS)

530 Location of subthalamic nucleus deep brain stimulator electrodes: correlation with brain morphology
P. House, P. Larson, V. Davis, P. Starr

531 Stable localization of stimulating electrode in human subthalamic nucleus in advanced Parkinson's disease
N. Torres, C. Chen, S. Chabardes, K. Ashkan, P. Pollack, A. Benabid

532 STN stimulation in Parkinson's disease: impact on social and familial adaptation

533 Time-course, predictors and regional distribution of improvement in primary generalised dystonia following pallidal deep brain stimulation
S. Tisch, P. Limousin, M. Jahanshahi, K. P. Bhatia, N. Quinn, M. Hariz

534 Bilateral deep brain stimulation of internal globus pallidus improves dystonic symptoms of neurodegeneration with brain iron accumulation: two cases report
R. Y.-Y. Lo, S.-H. Lin, S.-Y. Chen, S.-Z. Lin

535 Management of dystonia with deep brain stimulation in Colombia
J. Espinosa, G. J. Arango

536 MRI targeting of the subthalamic nucleus for deep brain stimulation (DBS) in Parkinson's disease
C. Pappas, V. Wheelock, K. Sigvardt

537 Craniometry and 3rd ventricular size were not confounding factors in MRI–directed targeting of subthalamic nucleus deep brain stimulation
S.-Y. Chen, Y.-C. Chou, S.-H. Lin, Y.-H. Pan, S.-Z. Lin

538 Are the beneficial effects of subthalamic stimulation in Parkinson's disease antagonized by neuroleptics?

539 Micro-electrode recordings from the subthalamic nucleus (STN) in Parkinson's disease (PD) during inhaled general anaesthesia
A. Valentin, M. Samuel, G. Brand, G. Alarcon, H. Devros, R. Selway

540 Lead migration of deep brain stimulation electrodes – role of the plain skull x-ray
M. Samuel, P. G. Bain, J. Jarosz, T. Z. Aziz, G. Brand, R. Selway

541 Surgical management of Parkinson's disease. Deep brain stimulation of the prelemniscal radiations
J. Espinosa, G. J. Arango

542 Management of unilateral Holmes' tremor with contralateral subthalamic nucleus stimulation. A case presentation
J. Espinosa, G. J. Arango

543 A new muscle–splitting approach for selective denervation for cervical dystonia: experience in thirty–six cases
C. A. Arce

544 Deep–brain stimulation of caudal zona incerta for treatment of dystonic tremor – a case report
P. Plaha, S. Filipovic, P. Heywood, S. Gill

545 Predictors of battery life for activa deep brain stimulation
W. G. Ondo, C. Meilak, M. A. Almaguer, K. D. Vuong, J. Jankovic

546 Pallidal DBS for primary torsion dystonia: suboptimal outcome in patients with prior thalamotomy

547 Spatial distribution of DBS contacts in the STN area in Parkinson's disease patients, related to the best therapeutic effect and to the side effects
C. C. Chen, N. Torres, P. Krack, S. Chabardes, P. Pollak, A. L. Benabid

548 Treatment of anti–GAD antibody tremor and cerebellar syndrome with thalamic deep brain stimulation
I. Subramanian, S. Perlman, J. Bronstein
565 Essential tremor: mild olfactory dysfunction in a cerebellar

564 Primary writing tremor successfully treated with botulinum

563 Olfaction is normal in essential tremor and can be used to

562 Active vibration control system for essential tremor

561 DBS for upper limb tremor in Wilson disease

560 Unusual reaction to deep brain stimulation electrode placement

559 For Parkinson's disease

558 Is advanced age an absolute contraindication to subthalamic

557 Bilateral tremor: a comparison study

556 Effects of STN stimulation and medication on strength,

555 Pallidotomy for L–dopa induced dyskinesias in parkinsonism

554 Second to Wilson's disease (WD)

553 Is advanced age an absolute contraindication to subthalamic

552 Designing rigorous surgical trials: guidance from North

551 DBS for upper limb tremor in Wilson disease

550 Unusual reaction to deep brain stimulation electrode placement

549 Efficacy & tolerability of rapid cyclical stimulation of the

548 Striatal dopamine transporter (DAT) abnormalities in patients

547 Validation of a tremor intensity scoring by the computerized

546 Primary writing tremor successfully treated with botulinum

545 Intention tremor of the head in patients with essential tremor

544 Distraction in psychogenic tremor: a possible approach to self–

543 Harmane as an environmental risk factors for essential tremor:

542 Psychogenic palatal tremor

541 Efficacy & tolerability of rapid cyclical stimulation of the

540 Termination with REM sleep supports supranuclear origin of

539 What is the role of the first harmonic of parkinsonian tremor?

538 Familial essential tremor (ET) with apparent autosomal

537 Psychopathology in essential tremor: use of a validated

536 How might a clinician's concept of severe and normal tremor

535 Harmane as an environmental risk factors for essential tremor:

534 Sub–thalamic deep brain stimulation after pallidotomy

533 Anti–basal ganglia antibodies and Tourette’s syndrome: a

532 Distraction in psychogenic tremor: a possible approach to self–

531 The effectivness and tolerability of Topiramate for treatment of

530 Termination with REM sleep supports supranuclear origin of

529 Isolated tongue tremor: three patients, three etiologies

528 Validation of a tremor intensity scoring by the computerized

527 Familial essential tremor (ET) with apparent autosomal

526 How might a clinician's concept of severe and normal tremor

525 Distraction in psychogenic tremor: a possible approach to self–

524 Isolated tongue tremor: three patients, three etiologies

523 Harmane as an environmental risk factors for essential tremor:

522 Psychogenic palatal tremor

521 Efficacy & tolerability of rapid cyclical stimulation of the

520 Striatal dopamine transporter (DAT) abnormalities in patients

519 Validation of a tremor intensity scoring by the computerized

518 Isolated tongue tremor: three patients, three etiologies

517 Psychogenic palatal tremor

516 Efficacy & tolerability of rapid cyclical stimulation of the

515 Striatal dopamine transporter (DAT) abnormalities in patients

514 Validation of a tremor intensity scoring by the computerized

513 Isolated tongue tremor: three patients, three etiologies

512 Psychogenic palatal tremor

511 Efficacy & tolerability of rapid cyclical stimulation of the

510 Striatal dopamine transporter (DAT) abnormalities in patients

509 Validation of a tremor intensity scoring by the computerized

508 Isolated tongue tremor: three patients, three etiologies

507 Psychogenic palatal tremor

506 Efficacy & tolerability of rapid cyclical stimulation of the

505 Striatal dopamine transporter (DAT) abnormalities in patients

504 Validation of a tremor intensity scoring by the computerized

503 Isolated tongue tremor: three patients, three etiologies

502 Psychogenic palatal tremor

501 Efficacy & tolerability of rapid cyclical stimulation of the

500 Striatal dopamine transporter (DAT) abnormalities in patients

499 Validation of a tremor intensity scoring by the computerized

498 Isolated tongue tremor: three patients, three etiologies

497 Psychogenic palatal tremor

496 Efficacy & tolerability of rapid cyclical stimulation of the

495 Striatal dopamine transporter (DAT) abnormalities in patients

494 Validation of a tremor intensity scoring by the computerized

493 Isolated tongue tremor: three patients, three etiologies

492 Psychogenic palatal tremor

491 Efficacy & tolerability of rapid cyclical stimulation of the

490 Striatal dopamine transporter (DAT) abnormalities in patients

374 Isolated tongue tremor: three patients, three etiologies

373 Psychogenic palatal tremor

372 Efficacy & tolerability of rapid cyclical stimulation of the

371 Striatal dopamine transporter (DAT) abnormalities in patients

370 Validation of a tremor intensity scoring by the computerized

369 Isolated tongue tremor: three patients, three etiologies

368 Psychogenic palatal tremor

367 Efficacy & tolerability of rapid cyclical stimulation of the
<table>
<thead>
<tr>
<th>Poster Session 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>585</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>586</td>
</tr>
<tr>
<td>587</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>588</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>589</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>590</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>591</td>
</tr>
<tr>
<td>592</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The Movement Disorder Society (MDS) is an international professional society of clinicians, scientists and other healthcare professionals who are interested in Parkinson’s disease, related neurodegenerative and neuromuscular disorders, hyperkinetic Movement Disorders and abnormalities in muscle tone and motor control. The spectrum of clinical disorders represented by the Society includes but is not limited to:

- Ataxia
- Myoclonus
- Blepharospasm
- Parkinson’s disease
- Dysphonia
- Spasticity
- Dystonic disorders
- Tardive dyskinesia
- Gait disorders
- Tics and Tourette syndrome
- Huntington’s disease
- Tremor

Non Members Applying for MDS Membership

- Non-Members may apply for MDS membership - the registration fee includes MDS membership at a reduced rate ($50 savings) with limited benefits through 2005, and full membership status in 2006. New MDS Member applicants will be contacted by the MDS International Secretariat to provide additional information.

Membership Benefits as of 2005

- A subscription to the print, DVD, and online journal, Movement Disorders, including supplemental publications, such as Management of Parkinson’s Disease: An Evidence-Based Review and Pediatric Movement Disorders CD-ROM.
- A unique selection of educational opportunities, including online Continuing Medical Education (CME) activities and reference materials on topics in Movement Disorders such as The Movement Disorder Society’s Guide to Botulinum Toxin Injections.
- A reduction in fees charged for participation in the Society’s educational programs. Among these are the annual International Congress of Parkinson’s Disease and Movement Disorders, and various clinical and scientific programs, courses and workshops held separately from the Congress.
- A Members Only section of the MDS website at www.movementdisorders.org, including a searchable membership directory.
- A print directory listing addresses, telephone and fax numbers, and e-mail addresses for all members.
- A quarterly newsletter entitled, Moving Along.
- Participation in the election of Officers and International Executive Committee members.

2005 will be another exciting year for MDS and we look forward to bringing you news of these and other new initiatives through the Movement Disorders journal, Moving Along newsletter and the MDS Web site.

For further information, please contact:

The Movement Disorder Society
International Secretariat
555 East Wells Street, Suite 1100
Milwaukee, WI 53202 USA
Tel: +1 414-276-2145
Fax: +1 414-276-3349
E-mail: info@movementdisorders.org
Future International Congresses of Parkinson’s Disease and Movement Disorders

Kyoto, Japan
October 29 to November 2, 2006

Istanbul, Turkey
June 3 to 7, 2007

Chicago, IL USA
June 22 to 26, 2008

For updated information on International Congresses, please visit our Web site at www.movementdisorders.org or contact the International Secretariat at:

The Movement Disorder Society
555 East Wells Street
Suite 1100
Milwaukee, WI 53202 USA
Telephone: +1 414-276-2145
Fax: +1 414-276-3349
E-mail: congress@movementdisorders.org