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Abstract: An appreciation of the multiple roles that serotonin
(5-HT) may play in Parkinson’s disease (PD) has increased
in recent years. Early pathological studies in PD demon-
strated nonselective reductions of 5-HT in brain tissue but lit-
tle correlation to comorbidities such as dyskinesia and mood
disturbance. This, combined with treatment failures using
serotonergic drugs in comparison to levodopa, meant the field
was largely neglected until recently. The multitude of sub-
types of 5-HT receptors in the brain and an increased under-
standing of the potential function 5-HT may play in modulat-

ing other neurotransmitter systems, including dopamine,
GABA, and glutamate, have meant an expansion in efforts to
develop potential serotonergic drugs for both motor and non-
motor symptoms in PD. However, several unanswered
questions remain, and future studies need to focus on corre-
lating changes in 5-HT neurotransmission in both patho-
logical and in vivo imaging studies with a full clinical
phenotype. � 2009 Movement Disorder Society
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INTRODUCTION

Serotonin, initially identified in 1948 as a chemical

within the blood stream (serum) that was able to cause

vasoconstriction (tonus), was subsequently determined

to be 5-hydroxytryptamine (5-HT).1 Over the past 60

years, increased understanding of the role of serotonin

as a neurotransmitter within the CNS has expanded

knowledge of many brain functions. Thus, the seroto-

nergic system is one of the most widely distributed,

highly conserved neurotransmitters, innervating virtu-

ally all regions of the CNS and allowing it to partici-

pate in basic physiological functions such as sleep,

arousal, feeding, and satiety, as well as more complex

activities such as mood and emotion. This diversity of

function is manifested by the large number and wide

distribution of 5-HT receptors. To date, there are 14

distinct subtypes of the 5-HT receptor, with many

more isoforms; this large number has been suggested

to reflect the fact that the 5-HT system is one of the

oldest neurotransmitter systems in evolutionary terms

and has thus had the longest to diversify.2 The advant-

age in terms of therapeutics is that selective regional

localization of 5-HT subtypes theoretically allows for

relatively selective targeting of drugs in disease states

without inducing off target side-effects.

EVIDENCE FOR ALTERED

SEROTONERGIC NEUROTRANSMISSION

IN PARKINSON’S DISEASE

In the normal brain, there is a dense serotonergic

innervation of the basal ganglia from the raphe nuclei,

particularly the dorsal raphe nuclei (DRN) that also

send projections to the frontal cortex, limbic system,
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and diencephalon.3 In particular, the striatum and the

output regions of the basal ganglia, the substantia nigra

pars reticulata (SNr), and medial globus pallidus

(GPm) receive a dense serotonergic input,4 thus sug-

gesting a potential role for serotonin in Parkinson’s

disease (PD). In early postmortem studies of patients

with PD, depletion of serotonin in the caudate as well

as hypothalamus and frontal cortex was reported,

although not to the same degree as dopamine loss.5–7,8

A recent pathological study has confirmed some of

these findings, showing preferential loss of 5-HT in the

caudate compared with the putamen, but with rela-

tively less loss of 5-HT (66%) than dopamine (98%).9

Imaging studies in vivo have also suggested depletion

of 5-HT innervation to the striatum as measured via

decreased serotonin transporter binding.10–12 The loss

of striatal 5-HT in PD may be secondary to neurode-

generation within the raphe nuclei as Lewy bodies are

seen in the raphe nuclei13,14 and there is associated

cell loss.15,16 However, none of these studies reported

a correlation with motor disability, dyskinesia, mood,

or psychiatric comorbidities.

SEROTONERGIC INVOLVEMENT IN MOTOR

SYMPTOMS AND LEVODOPA-INDUCED

DYSKINESIA IN PD

While pathological and imaging studies have sug-

gested a depletion of 5-HT in PD, early attempts to

administer serotonergic agents to treat motor symptoms

of PD were generally unsuccessful.17,18 This lack of

effect may relate to multiple subtypes of 5-HT receptor

mediating opposing actions. For instance, in the nor-

mal, non-parkinsonian brain, 5-HT generally facilitates

dopaminergic release via a variety of 5-HT receptors,

for example 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3, and 5-

HT4, whereas 5-HT2C receptors tend to inhibit dopa-

mine release.19 In the dopamine-depleted parkinsonian

brain, as well as in the brain following long-term L-

dopa use and the development of dyskinesia (LID), the

effects of 5-HT on remaining dopamine release are

unclear and may depend on the subtype of 5-HT recep-

tor targeted and the animal model of PD used (see

later).

In addition to dopamine, 5-HT also modulates the

actions of other neurotransmitters, including GABA

and glutamate, as well as providing feedback mecha-

nisms on 5-HT neurotransmission itself via an action

in the DRN.20 Given the extensive loss of dopamine in

PD, it is likely that the effects of 5-HT are to modulate

non-dopaminergic neurotransmission. Both GABA and

glutamate are involved in the basal ganglia circuitry in

PD and following the development of LID.21–23 The

subtypes of 5-HT receptor that may mediate such

actions are unclear as, to date, there are limited studies

investigating changes in specific 5-HT subtypes in PD

and LID. Many of the studies performed used older,

nonselective 5-HT agents with limited clinical data on

concomitant medication use, presence of LID, or

comorbidities such as depression or anxiety. As such,

interpretation is limited. In addition, animal models of

PD, although providing some information regarding

possible changes in 5-HT receptors following parkin-

sonism and long-term L-dopa use, need to be interpreted

with caution. Thus, the unilateral 6-OHDA-lesioned rat

exhibits compensatory serotonergic hyperinnervation of

the striatum,24 an effect not reported in human PD to

date. The 6-OHDA-lesioned model may therefore not

be predictive of 5-HT receptor changes in PD. The 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

lesioned primate may provide a more valuable model as

MPTP can deplete 5-HT in the striatum as well as in the

cingulate and frontal cortex,25,26 though this is not

consistent across all groups or implementaions.27

Drugs Targeting 5-HT Receptors in the

Treatment of Motor Symptoms in PD

Selective serotonergic drugs that target specific

receptors have not been studied in the treatment of the

motor symptoms of PD, probably because of earlier

failures. In addition, case studies have suggested that

enhancing 5-HT levels with selective serotonin re-

uptake inhibitors (SSRIs) can potentially worsen

PD,28,29 although epidemiological studies have not sug-

gested any increased risk of worsening PD when SSRIs

have been prescribed for depression.30 Thus, current

means of influencing 5-HT mediated neurotransmission

in the treatment of motor symptoms in PD comes from

use of dopamine agonists, many of which also have

5-HT binding properties, or with nonselective 5-HT

agents used specifically for treatment of PD tremor.

5-HT Binding Properties of Dopamine Receptor

Agonists: A Possible Factor in Variable

Efficacy and Side-Effect Profile?

The different pharmacological profiles, in terms of

5-HT receptor affinity, of dopamine agonists (DAs)

may account for potential side-effects and/or variable

efficacy. Thus, the ergoline DAs apomorphine, pergo-

lide, bromocriptine, cabergoline, and lisuride bind to

several 5-HT receptors, including 5HT1A, 5-HT1D,

5-HT2A, and 5-HT2B receptors, while the nonergoline

agonists ropinirole and pramipexole have a more selec-
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tive affinity for 5-HT1A receptors31 (Table 1). To date,

the most well-defined clinical effect related to this 5-

HT binding property is the 5-HT2B-agonist action of

some ergoline DAs that has been linked to the poten-

tially serious but rare problem of restrictive cardiac

valulopathy.32,33 Lisuride is a 5-HT2B antagonist and,

as such, has not been reported to cause this problem.34

5-HT2B receptors are located on cardiac valves, and

their stimulation results in fibroblast mitogenesis.35

Pleuropulmonary and retroperitoneal fibrosis have also

been reported to be caused by 5-HT2B, and possibly

5-HT2A, receptor binding activity.36,37

Clinical experience would suggest that ergoline

DAs, particularly lisuride, induce more psychiatric

side-effects than nonergoline DAs, although this has

not been shown in randomized clinical trials (RCTs).

Such findings may be related to greater 5-HT binding

of ergoline versus nonergoline DAs (Table 1). How-

ever, some studies have reported impulse control disor-

ders, in particular pathological gambling, in patients

with PD associated with nonergoline DAs such as pra-

mipexole.38,39 In contrast, other studies have not shown

any specific association with a particular DA or dose

of DA.40–42 These findings may reflect prescribing

habits rather than true effects of receptor binding

selectivity.43

Several systematic reviews have been published

and report similar clinical benefits, or risk of inducing

dyskinesia, with all DAs,44–46 although few head-to-

head studies have been performed. Studies comparing

bromocriptine with ropinirole or pramipexole have

shown no significant differences in efficacy.47 Thus,

despite the potential difference in binding at 5-HT

receptors implicated in motor function and LID, no

clinically relevant differences have so far emerged

between the DAs. However, future development of

new DAs may need to take into account 5-HT binding

potential as it becomes clearer that these receptors

may have a role in LID and psychiatric disorders in

PD (see later).

5-HT Drugs in the Treatment of

Parkinsonian Tremor

One motor feature of PD that may be mediated in

part by 5-HT is tremor. Clinical observations suggest

tremor in PD is less responsive to dopaminergic drugs

than rigidity and bradykinesia. A PET study in

advanced patients with PD showed a 27% reduction in

midbrain raphe 5-HT1A binding potential compared

with healthy controls, a change that correlated with

tremor but not with bradykinesia or rigidity.48 Early

loss of 5-HT transporter binding was also noted in the

thalamus in drug naı̈ve patients with PD with tremor

compared with those without; however, after 17

months follow-up, this difference was not significant.49

Mirtazapine, an antidepressant with multiple mecha-

nisms of actions, including 5-HT1A agonist and 5-HT2

and 5-HT3 antagonist actions, can reduce parkinsonian

tremors50 (Table 2). In addition, the atypical antipsy-

chotic clozapine, which binds to 5-HT2A/2C receptors,

also suppresses tremor.51 The mechanism of action or

subtype of 5-HT receptor mediating an anti-tremor

effect is unknown. However, in a proposed model of

PD tremor, tacrine-induced tremulous jaw movements

in rodents, 5-HT2A antagonists reduce tremor via a

selective action in the SNr.52

Drugs Targeting 5-HT Receptors in the Treatment

of L-dopa -Induced Dyskinesia

While 5-HT drugs have generally not shown promise

as treatment for the motor symptoms of PD, several

5-HT receptors have been implicated in LID (Table 2).

5-HT1A Receptor Agonists Reduce Dyskinesia but

may Worsen PD Motor Symptoms

5-HT1A receptors are principally located as autore-

ceptors on the cell bodies of the DRN, where they in-

hibit cell firing. Lower levels are located postsynapti-

cally within the striatum and subthalamic nucleus.53 In

TABLE 1. Relative affinity of clinically available dopamine receptor agonists for 5-HT receptors

Dopamine agonist 5-HT1A 5-HT1B 5-HT1D 5-HT2A 5-HT2B 5-HT2C

Non ergoline Ropinirole 1 0/1 1 0/1 0/1 0/1
Pramipexole 1 0/1 1 0/1 0/1 0/1

Ergoline Apomorphine 1 1 1 1 1 1
Cabergoline 1 1 11 11 11 1
Pergolide 11 1 1 1 11 1
Bromocriptine 11 1 11 1 1 1
Lisuride 111 1 111 11 22 11

1 5 agonist; 2 5 antagonist; 0 5 no activity; 0/1 5 low activity; 1 to 1111 5 increased potency (adapted from ref. 31).
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the untreated MPTP-lesioned primate model of PD, 5-

HT1A receptors are upregulated in the putamen.54 Post-

mortem studies in patients with PD have shown either

no change55 or increased 5-HT1A receptors in the neo-

cortex compared with age-matched controls.56 Thus,

these studies suggest a possible compensatory increase

in 5-HT1A receptors in PD; however, the changes that

may occur with development of LID are unclear.

Some studies suggest that the relatively intact sero-

tonergic input to the basal ganglia in PD is the site of

conversion of L-dopa to dopamine; dopamine is then

released from 5-HT neurons as a false neurotransmit-

ter.57–59 However, because this is a non-physiological

mechanism of dopamine release, the resulting abnor-

mal activation of striatal dopamine receptors may be

partly responsible for LID.60 Indeed, reducing seroto-

nergic activation can reduce dopamine release in the

striatum.61 In the 6-OHDA-lesioned rat, the 5-HT1A

agonist R-(1)-8-OH-DPAT when administered with L-

dopa reduces extracellular dopamine levels.62 Thus,

activation of presynaptic 5-HT1A receptors in the DRN

with 5-HT1A agonists may reduce firing of this raphe-

striatal input, thereby reducing LID. This action, how-

ever, may also result in worsening of parkinsonism—

an effect seen when some 5-HT1A agonists are admin-

istered with L-dopa (see below). Nevertheless, this can-

not provide a complete explanation as identical effects

on LID and worsening parkinsonism can occur when

R-(1)-8-OH-DPAT is administered with the direct

postsynaptic dopamine D2/3 agonist pramipexole.63

Recent evidence has also implicated 5-HT in the devel-

opment of ‘‘runaway dyskinesias,’’ which may occur in

patients with PD following transplanted fetal ventral

mesencephalic (FVM) tissue because of the presence

of serotonergic neurons in grafted tissue. Thus, using

FVM in 6-OHDA-lesioned rats, worse LID developed

in serotonin-rich grafts than in dopamine-rich grafts—

an effect that correlated with the degree of dopaminer-

gic degeneration.64

Other potential areas where 5-HT1A agonists may

reduce LID include postsynaptic 5-HT1A receptor

stimulation and reduced glutamate activity. Thus,

intracortical injection of the presumptive 5-HT1A ago-

nist sarizotan reduces cortical and striatal glutamate

levels in rodents, an effect blocked by selective 5-

HT1A antagonists.65 In normal, awake monkeys, 5-

HT, acting via 5-HT1A receptors, suppresses pallidal

bursting activity via glutamatergic mechanisms.66 The

effects, however, occur within both medial and lateral

pallidal segments, and thus, depending on site of

action, could potentially both reduce LID and worsen

PD motor function.

Preclinical studies using 5-HT1A agonists have

shown potential promise as antidyskinetic drugs but

also have the potential to worsen parkinsonism. Thus,

the selective 5-HT1A agonist R-(1)-8-OH-DPAT or the

partial 5-HT1A agonist buspirone reduces LID in the

6-OHDA-lesioned rat.60,67–69 R-(1)-8-OH-DPAT also

reduced LID by 50% in MPTP-lesioned primates; how-

ever, this was accompanied by a worsening of parkin-

sonian motor scores.63 The serotonergic drug ‘‘ecstasy’’

(3,4-methylenedioxymethamphetamine, MDMA) re-

duced LID in the 6-OHDA-lesioned rat—an effect

blocked by pretreatment with a 5-HT1A antagonist.70

MDMA also reduced LID in the MPTP-lesioned pri-

mate, with no detrimental effect on parkinsonism.71

Sarizotan reduced LID by >90% in the MPTP-

primate; an effect blocked by the selective 5-HT1A an-

tagonist WAY100635, also suggesting the responses

were mediated via the 5-HT1A receptor.72

In clinical studies, the nonselective 5-HT1A agonist

buspirone (20 mg/d) reduced LID without worsening

TABLE 2. Serotonergic drugs evaluated for motor symptoms and levodopa-induced dyskinesia in PD

Drug 5-HT subtype
Effective on

PD motor symptoms

Effective on
levodopa-induced

dyskinesia Comments

Mirtazapine 5-HT1A agonist; 5-HT2,
5-HT3 antagonist

Reduces PD tremor Yes Mirtazapine also binds to non 5-HT
receptors including acetylcholine and
noradrenaline

Clozapine 5-HT2A/2C receptor
antagonist

Reduces tremor; no
worsening of PD

Yes Practical issues with regulatory monitoring

Quetiapine 5-HT2A/2C receptor
antagonist

At low doses (25–50 mg)
no adverse effects seen

No No studies have been preformed using
higher doses of quetiapine (>50mg/d)

Buspirone 5-HT1A agonist No worsening Possible Single trial in 10 patients with PD
Sarizotan 5-HT1A agonist Potential to worsen

parkinsonism
Non significant

compared to
placebo

Sarizotan also has dopamine D2 antagonist
binding. Large placebo effect
(development has now stopped)

Pimavanserin 5-HT2A inverse agonist Unknown Possible Preliminary reports to date; on going study

1258 S.H. FOX ET AL.

Movement Disorders, Vol. 24, No. 9, 2009



parkinsonian disability in 10 patients with PD,73 while

the antidepressant mirtazapine also reduced LID with-

out worsening parkinsonism.74,75 Sarizotan has been

assessed as a potential treatment for LID, and in an

initial Phase IIa study, sarizotan (10 mg) reduced LID

by 40% without affecting antiparkinsonian action.76 In

an open label study in 64 patients with PD, sarizotan

(20 mg) also reduced LID, measured using diaries as

percentage on time with dyskinesia, but worsened par-

kinsonism requiring dose reduction in more than half

of study patients.77 Three larger RCT trials of sarizotan

have been conducted. One study, using 2, 4, and 10

mg/d (n 5 398), failed to demonstrate any significant

change in dyskinesia scores compared with placebo,

and higher doses were associated with increased off

time.78 Two studies using sarizotan 2 mg (PADDY-1,

n 5 504 and PADDY-2, n 5 403), demonstrated no

significant improvement in LID compared with pla-

cebo.79 These studies suggest that either 5-HT1A ago-

nists have to be used at a critical dose because of the

potential to reduce dopamine release (as discussed

above), or in the case of sarizotan, the worsening of

PD may relate to actions at non-5-HT receptors as sari-

zotan is also a dopamine D2/D3 receptor antagonist.
80

5-HT1B Receptor Agonists have Potential

to Reduce Dyskinesia, but No Clinical

Studies have been Performed

5-HT1B receptors are selectively located on the ter-

minals of 5-HT neurons in the striatum and on

GABAergic striatopallidal output neurons in the SNr

and globus pallidus, suggesting a potential role in mod-

ulating the activity of these pathways and in motor

function in PD.81,82 5-HT1B knockout mice exhibit

hyperactivity, suggesting a role in movement.83 A sin-

gle postmortem study demonstrated no change in 5-

HT1B receptor levels within the stratum and substantia

nigra in six patients with PD compared with age-

matched controls.84 In the 6-OHDA-lesioned rat,

repeated L-dopa treatment results in an increase in 5-

HT1B receptors and an associated adaptor protein p11

on the direct D1-mediated direct striatonigral pathway,

suggesting a role of 5-HT1B receptors in LID.85

5-HT1B agonists have potential to reduce LID via

several mechanisms. Thus, stimulation of 5-HT1B

receptors within the striatum can reduce 5-HT

release,86 which may reduce L-dopa metabolism to do-

pamine, and hence reduce dopamine release in a way

similar to 5-HT1A agonist actions.60 In addition, stimu-

lation of 5-HT1B receptors in the SNr87 and globus pal-

lidus suppresses GABA release,66,88 effects that may

reduce inhibition of the basal ganglia output regions

(SNr and GPm) and improve LID. Preclinical studies

using the 6-OHDA-lesioned rat have shown a reduction

in LID with a selective 5-HT1B agonist, CP-94253.60,85

In the MPTP-primate, the nonselective 5-HT1B/1D ago-

nist SKF-99101 reduced LID but with a worsening of

parkinsonian disability.89 The antidyskinetic action of

MDMA can also be blocked by 5-HT1B antagonists.63

Thus, 5-HT1B agonists have potential as antidyskinetic

agents, but no clinical trials have yet evaluated selec-

tive 5-HT1B agonists in PD. A recent study has also

demonstrated the potential synergistic effect of sub-

threshold doses of combined 5-HT1A agonist and 5-

HT1B agonist to reduce LID in the MPTP-primate

without affecting the antiparkinsonian action.90

Mixed 5-HT2A/2C Receptor Antagonists may

Reduce Dyskinesia Without Worsening

PD Motor Symptoms

5-HT2A receptors are the most widely distributed

subtype in the brain, found in the cortex, basal ganglia,

and claustrum. In PD, a single study showed an

increase in 5-HT2A receptors in the neocortex but no

clinical correlation to presence of LID.56 In the 6-

OHDA-lesioned rat, 5-HT2A mRNA is increased in the

striatum but not in the cortex or the subthalamic nu-

cleus,24,91 an effect reversed by L-dopa.92 This suggests

5-HT2A receptors are modulated by nigrostriatal dopa-

mine, but the exact mechanism in LID remains

unclear. In preclinical studies, a selective 5-HT2A re-

ceptor antagonist, M100907, failed to reduce LID but

reduced dyskinesia induced by a dopamine D1 ago-

nist.93 In the MPTP-lesioned primate, methysergide, a

nonselective 5-HT2 antagonist, reduced LID but with

adverse effects on parkinsonism.94 ACP-103 (pimavan-

serin), a selective 5-HT2A inverse agonist, was recently

demonstrated to reduce LID by 36% in the MPTP-pri-

mate without worsening motor scores.95

The atypical antipsychotic drugs clozapine and que-

tiapine have mixed 5-HT2A/2C antagonist properties, as

well as dopamine D2 antagonist properties.96 Both

drugs reduce LID in the MPTP-primate.97–99 One

potential mechanism whereby clozapine and quetiapine

can reduce LID without worsening parkinsonism may

relate to 5-HT2C receptor antagonism. Thus, 5-HT2C

receptors are selectively located within the SNr and

GPm.100 5-HT via 5-HT2C receptors is excitatory in

the SNr,92,101,102 which may contribute to the increased

activity of these regions in PD. Systemic administra-

tion of selective 5-HT2C antagonists to 6-OHDA-

lesioned rodents potentiates the antiparkinsonian action
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of dopamine D1 and D2 agonists,103,104 which is an

action mediated via 5-HT2C receptors in the SNr.103

Thus, 5-HT2C receptor antagonists may improve par-

kinsonism, and drugs with HT2C receptor antagonist

action are unlikely to worsen PD.

Clinical studies with clozapine and quetiapine have

shown mixed benefit in reducing LID in PD. Thus, low

dose clozapine (mean dose 39 mg/d) reduced on-time

with LID in a RCT in PD.105 However, practical use

of clozapine is difficult because of mandatory blood

monitoring for the potential risk of agranulocytosis. A

RCT of low dose quetiapine (mean dose 25 mg) had

no effect on LID.106 Pimavanserin, an inverse 5-HT2A

agonist, was reported as reducing in LID without wor-

sening of parkinsonian symptoms in 12 patients with

PD.107

SEROTONERGIC INVOLVEMENT IN

DEPRESSION AND ANXIETY IN PD

There is inconsistent evidence for 5-HT involvement

in PD depression and anxiety.

In PD, mood disturbances such as depression and

anxiety are extremely common. Anxiety and depres-

sion have also been associated with an increased risk

of later development of PD.108,109 The pathophysiolog-

ical mechanisms involved in mood disturbances in PD

remain unclear, but serotonergic dysfunction has been

postulated as such systems are involved in mood disor-

ders in non-PD and the raphe nuclei, as well as hippo-

campus and prefrontal cortex, appear to be the primary

sites affected.110,111 Transcranial ultrasound studies

have suggested an association with reduced brainstem

raphe echogenicity and nigral hyperechogenicity in

patients with depression preceding PD onset compared

with nondepressed patients with PD.112 Thus, depres-

sion prior to the onset of motor symptoms in PD may

relate to early involvement of serotonin in the raphe

nuclei. However, the parts of the raphe initially

affected (Braak stage 2) are the lower raphe nuclei,14

which project predominantly to the somatic nuclei of

the brainstem and spinal cord, rather than the rostral

group, which ascends to the forebrain and is more

likely implicated in mood. The rostral group, including

the DRN, only becomes affected in Braak stage 3,

when Lewy body pathology appears in the substantia

nigra pars compacta and motor symptoms occur.14

Moreover, a PET study in five early patients with PD

showed no change in serotonin transporter binding in

the medulla compared with 8 age-matched controls.12

Thus, the cause of early depression and anxiety in pre-

symptomatic PD is unclear.

As the disease progresses, Lewy bodies occur within

the rostral raphe, thalamus, and limbic and cortical

regions,113 which may result in the mediating of mood

disturbance in advanced PD. However, direct evidence

of a selective disturbance of serotonergic neurotrans-

mission linked to depression or anxiety in advanced

PD is lacking because of limited clinicopathological

studies.16,114 Postmortem evidence has shown a lower

density of neurons in the DRN in depressed versus

nondepressed patients with PD,16 and CSF measure-

ments in vivo have shown reduced serotonin metabo-

lite (5-HIAA) levels in depressed patients with PD.115

In contrast, imaging studies have found no evidence

for disruption of the brainstem raphe serotonin system

(reduced [123I]b-CIT SPECT uptake in the dorsal mid-

brain) in patients with PD with and without depres-

sion.116 A [11C]-DASB PET study in seven patients

with PD with untreated depression showed elevated se-

rotonin transporter binding in the prefrontal cortex

compared with non-PD age-matched controls.117 In an

acute tryptophan depletion study performed in patients

with PD with depression, no effect on mood was

found, which contrasts with the classical mood lower-

ing effects of acute tryptophan depletion seen in

patients with non-PD at risk of depression and suggests

that serotonin might contribute less to PD depres-

sion.118 The phenomenology of depression in PD is

also different from that in patients with non-PD with

less anhedonia and feelings of guilt.119 Many patients

with PD may also experience depression, even on

adequate doses of antidepressant therapy,120 again sug-

gesting the pathophysiology of depression in PD may

be different from that in patients with non-PD and

questioning the role of 5-HT.

Treatment of Depression and Anxiety in PD

Involves SSRIs and TCAs

Despite the lack of direct evidence of 5-HT involve-

ment, the current management of depression and anxi-

ety in PD involves use of SSRIs, mixed serotonin and

noradrenergic re-uptake inhibitors (SNRIs), and tricy-

clic antidepressants (TCAs). The subtypes of 5-HT re-

ceptor implicated in mood in non-PD include 5-HT1A

receptors in the raphe nuclei121 and postsynaptic 5-

HT1A and 5-HT2A receptors in limbic and cortical

regions.122 Other subtypes, such as 5-HT3, 5-ht6, and

5-HT7, may be involved, although the evidence is less

clear.123 Most antidepressants in current use enhance

serotonergic neurotransmission by inhibiting 5-HT re-

uptake and by indirectly affecting these postsynaptic

5-HT receptors. Indeed, the ability to affect multiple
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5-HT receptors appears to be an important factor in the

efficacy of antidepressants as, to date, agents that tar-

get a single receptor, for example selective 5-HT1A

agonists, appear less effective than SSRIs or TCAs that

indirectly target multiple 5-HT receptors.124

The true efficacy of these antidepressants in PD,

however, is unclear as there have been limited RCTs

and many have used low, possibly subtherapeutic doses

of antidepressants with short-term follow-up.120,125 The

latter may be due to the perceived risk of worsening

parkinsonism with SSRIs that has been reported (see

earlier), although in practice the risk is very small. In

addition, the potential side-effects of TCAs, such as

postural hypotension and sedation, may also limit

adequate dosing, so the potential to improve depression

in patients with PD may not be fully evaluated. Sero-

tonin syndrome, consisting of confusion, agitation, or

hypomania with fever, myoclonus, tremor, and diapho-

resis and which occurs due to increased 5-HT1A stimu-

lation,126 is also a perceived risk of cotreatment of

patients with PD with antidepressants and monoamine

oxidase B (MAO-B) inhibitors. The manufacturers of

available MAO-B inhibitors advise against concomitant

use because of the potential risk of the serotonin syn-

drome. While the syndrome has been described when

serotonergic drugs such as SSRIs, TCAs, and trypto-

phan are combined with nonspecific MAO inhibi-

tors,127 in patients with PD, serotonin syndrome is

extremely rare because of the selective MAO B-inhibi-

tion properties of selegiline and rasagiline. In one ret-

rospective series of 4,568 patients with PD on both

selegiline and an antidepressant, only 11 patients

(0.24%) experienced symptoms suggestive of the sero-

tonin syndrome, and in nine, these were mild.128 In the

recent RCT of early versus delayed use of rasagiline in

1,176 early patients with PD, 17% were on antidepres-

sants, and there were no reports of serotonin syn-

drome.129

SEROTONERGIC INVOLVEMENT

IN PSYCHOSIS IN PD

Psychotic symptoms in PD can be a major cause of

morbidity. Patients with PD frequently describe well-

formed, complex visual hallucinations (VH), that may

be chronic and nonbothersome but can often become

frightening; some may develop paranoid delusions and

frank psychosis.130 The cause of these symptoms is

probably the interplay between pathological processes

and an effect of PD medications, as VH are most often

associated with cognitive decline and more advanced

disease. The effects of serotonergic drugs such as LSD

have led to suggestions that 5-HT may be involved in

psychotic symptoms in other disorders such as schizo-

phrenia.131–134 In PD, postmortem studies have sug-

gested a relative preservation of 5HT2 receptors in the

temporal cortex in patients with PD with VH compared

with patients without.135 Thus, abnormalities in 5HT2

receptor neurotransmission may be involved in the

neural mechanisms underlying VH and psychosis asso-

ciated with PD.

Treatment of Psychosis in PD with

5-HT2A/2C Antagonists

The atypical antipsychotic clozapine is currently the

most effective treatment for psychotic symptoms in PD

because of both a benefit in reducing symptoms as

well as lack of worsening parkinsonism.136,137 This

benefit occurs at much lower doses than are used to

treat schizophrenia, typically 50 mg. At low doses, clo-

zapine has a higher affinity for 5-HT2A than for dopa-

mine D2 receptors, suggesting the effect on psychosis

in PD is mediated via 5-HT2A receptors.96 Low doses

of quetiapine (40 mg/d138 and 62.5 mg),139 when

assessed in open label studies, also improved psychosis

without worsening motor symptoms, although some

patients with PD with dementia experienced worsening

motor scores.140,141 However, RCTs failed to demon-

strate a significant effect of quetiapine compared with

placebo, even up to doses of 200 mg/day.142–144 This

apparent lack of benefit in RCTs compared with open

label studies may be due to small numbers of patients,

larger than expected improvement in the placebo

groups, and the fluctuating nature of VH and psychosis

in PD. To date, there are no purely selective 5-HT2A

antagonists in clinical use. An open label study with

the nonselective 5-HT2 antagonist mianserin suggested

an improvement in VH in 10 patients with PD, with no

effect on PD. A RCT study using the inverse 5-HT2A

agonist pimavanserin in psychosis in PD is ongoing,

and preliminary reports from a Phase II study in 60

patients with PD reported a trend towards improvement

in psychosis without affecting PD motor scores.145

SEROTONINERGIC INVOLVEMENT IN

GASTROINTESTINAL FUNCTION IN

PARKINSON’S DISEASE

5-HT receptors located in the peripheral nervous

system may also play a role in PD. Constipation is a

frequent complication of PD that is principally due to

reduced gastrointestinal (GI) motility. The cause is

thought to be loss of parasympathetic innervation of
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the GI tract from the dorsal motor nucleus of the

vagus.146–148 Treatment is usually directed at nonspecific

stool softeners which generally have variable efficacy. 5-

HT4 receptors are located in the GI tract and can trigger

acetycholine release, an action that enhances gastric and

colonic motility.149 Thus, 5-HT4 agonists may be a

potential treatment for constipation in PD. Mosapride, a

5-HT4 agonist, demonstrated increased colonic motility

and improved constipation in an open label study in

seven patients with PD.150 Tegaserod, another 5-HT4

agonist, had a mild benefit in a small RCT in 15 patients

with PD.151 (However, tegaserod has now been with-

drawn because of safety issues related to ischemic colitis

and cardiovascular disease). Both agents can cross the

blood brain barrier, but neither study reported any

adverse effects on PD motor symptoms.

CONCLUSIONS

Serotonergic dysfunction appears to play a role in a

number of parkinsonian symptoms, including motor

function, L-dopa -induced dyskinesia, mood, psychosis,

and constipation. To date, the exact mechanisms

remain unclear because of a lack of clinicopathological

and in vivo studies. However, future studies are prom-

ising given the emerging availability of selective 5-HT

receptor ligands.
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