Deep Brain Stimulation in Patients with Mutations in Parkinson’s Disease-Related Genes

Rubens Gisbert Cury, MD, PhD and Lais Machado de Oliveira, MD; Movement Disorders Center, Department of Neurology, University of São Paulo, Brazil

In the era of precision medicine - an effort to identify which approaches will be effective for which group of patients based on genetic, environmental and lifestyle factors¹ - the question whether genetic background should guide specific therapeutic plans in patients with mutations in Parkinson’s Disease (PD)-related genes has gained increased relevance.

In this context, we systematically reviewed studies that have evaluated deep brain stimulation (DBS) motor outcome, non-motor symptoms and adverse events in patients with mutations in PD-related genes. Twenty-five studies (135 patients) with available objective motor outcomes were included in this review. To synthesize this data, we defined mean UPDRS III change of 50% or more as marked response, mean UPDRS III change of 30 to 50% as satisfactory response and less than 30% change as unsatisfactory response. Because of the variable postoperative follow-up intervals adopted by different studies, we defined shorter follow-up as mean follow-up less than two years, intermediate follow-up as mean follow-up between two and six years; and longer-term follow-up as mean follow-up of more than six years.

Parkin (PRKN), LRRK2 and GBA were the most frequent mutations in this population. At shorter-term, most patients with PRKN, LRRK2 (except for R144G) and GBA mutation had marked or satisfactory response to STN-DBS; and the improvement seen in the PRKN group was similar when we excluded the single heterozygous PRKN carriers. At the intermediate follow-up, although most PRKN homozygous/compound heterozygous patients and LRRK2 patients had marked or satisfactory responses after STN-DBS; in GBA patients the motor outcome varied equally among marked, satisfactory, and unsatisfactory responses. Longer-term follow-up was rarely reported. As the number of patients varied widely among groups, we emphasize these are all preliminary and exploratory findings. Unfortunately, data on GPI-DBS were scarce and precluded conclusions regarding target selection based on genetic status.

In regards to non-motor symptoms, non-systematic reporting and small sample size limited interpretation of the results. Despite these, worsening of cognition was a consistent finding in GBA patients. However, it is crucial to highlight that none of the studies describing GBA-DBS patients compared the cognitive outcome with GBA-PD patients not subjected to surgery. Higher progression to mild cognitive impairment and dementia has been shown in PD patients with GBA mutations at baseline ²,³, and it is still unclear whether STN-DBS inputs an additional risk and if GPI would be a safer target in these patients.

In conclusion, our study showed that DBS results in positive outcome at shorter-term in patients with PRKN, GBA and LRRK2 (non-R144G) mutations. Despite limitations regarding small sample size, it is possible that patients carrying GBA mutations may be associated with higher frequency of cognitive and other non-motor symptoms after surgery. Longer and larger cohort’s follow-up, with broader non-motor symptoms evaluations, will be necessary to better customize the DBS therapy in this population.

References

This summary was provided by the authors of the study. The full article was published in Movement Disorders Clinical Practice: https://onlinelibrary.wiley.com/doi/abs/10.1002/mdc3.12795

1. Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine, National Institutes of Health, Department of Health & Human Services, Published August 6, 2019.