DRUG-INDUCED MOVEMENT DISORDERS

Pille Taba MD, PhD
University of Tartu, Estonia
4 February 2018, Bordeaux
MDS-ES Winter School for Young Neurologists

Etiology of movement disorders

- Neurodegeneration
- Immune mediated
- Genetic factors
- Metabolic
- Toxic and drug induced
- Traumatic
- Vascular
- Infections
- Psychogenic

Drug induced movement disorders

- Parkinsonism
 - Subacute
 - Symmetrical
 - History of medications
 - Akinetic rigid
 - Tremor: atypical, postural
 - Accompanying oral-buccal dyskinesias or akathisia
- Dystonias, dyskinesias
- Chorea
- Akathisia
- Myoclonus
- Tics
- Tremor

DRUGS inducing movement disorders

- Neuroleptics
 - Butyrophenones (haloperidol, droperidol)
 - Phenotiazines (chlorpromazine, thioridazine etc)
 - Atypical neuroleptics (risperidone)
 - Benzamids (metoclopramide)
 - Dopamine depletors
 - Reserpine
 - Tetrabenazine
- Ca-channel blockers
 - Flunarizine
 - Anticonvulsants
 - Valproate
 - Antidepressants
 - Tricylic
 - SSRIs
 - Antihistamines
 - Antiarrhythmics
 - Lithium

Tardive dyskinesia

- In 15-30% of patients on long term antipsychotic treatment
- Classic tardive dyskinesia
 - Orofacial/bucco-lingual
 - Limbs, trunk
 - Rarely respiratory
 - Variants
 - Tardive tourettism
 - Tardive myoclonus
 - Tardive tremor
 - Higher risk in female; older age

Malignant neuroleptic syndrome

iatrogenic: dopamine receptor blockers/ antipsychotics; rarely – end of antiparkinsonian medication

Major criteria
- Hyperthermia
- Muscle rigidity
- Increase of creatine kinase (CK)

Confirmed diagnosis:
1) All 3 major criteria
2) 2 major and 4 minor criteria

Minor criteria
- Changes in mental status
 - Altered consciousness
 - Delirium, agitation
- Dysautonomia
 - Tachycardia
 - Unstable blood pressure
 - Tachynoea
 - Profuse sweating, salorrhoea
 - Leucocytosis

confirmed diagnosis 1985; DSM-5 Criteria 2013
Malignant neuroleptic syndrome

- Treatment: Dantrolen, Bromocriptine, benzodiazepines
- Rehydration, hypothermia
- Long term complications
 - Parkinsonism
 - Tardive dyskinesias – orobuccal, tongue
 - Dystonias
 - Cerebellar degeneration
 - Peripheral neuropathy
 - Contracts

Drug induced parkinsonism

- Etiology
 - Neuroleptic treatments in psychiatric patients on
 - Metoclopramide
 - Reserpine, tetrapenazine
 - Cinnarizine, flunarizine
 - Higher risk: older age; women
 - May worsen despite of withdrawal of the causing medication
 - Differentiating from PD
 - Non-motor symptoms – in PD more urinary symptoms, sleep disorders, hyposmia
 - SPECT normal in drug induced parkinsonism, abnormal in PD
 - 123I-MIBG scintigraphy normal in drug induced parkinsonism, abnormal in PD

Serotonin syndrome

- Caused by drugs enhancing serotonergic transmission
 - MAO inhibitors (MAO-B inhibitors very rarely)
 - Selective serotonin reuptake inhibitors (SSRI)
 - Tricyclic antidepressants
 - Opiates, amphetamines, MDMA (ecstasy), cocaine

- Core clinical features
 - Fever, tachycardia, hypertension, diarrhea
 - Myoclonus, opsoclonus, tremor, rigidity, seizures
 - Altered mental status, anxiety, agitation, delirium

Levodopa motor complications: Community-based and open studies

<table>
<thead>
<tr>
<th>Study site</th>
<th>Authors</th>
<th>L-dopa years</th>
<th>Motor fluct %</th>
<th>Dyskinesias %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torso, Estonia</td>
<td>Kadunski et al 2017</td>
<td>4</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Norway</td>
<td>Bjornstad et al 2016</td>
<td>5</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>Aberdeen, UK</td>
<td>Scott et al 2015</td>
<td>5</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Hashim et al 2014</td>
<td>3</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Lopez et al 2010</td>
<td>3</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Kum et al 2009</td>
<td>5</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Istanbul, Turkey</td>
<td>Brender et al 2006</td>
<td>6.5</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>Sydney, Australia</td>
<td>Hely et al 2005</td>
<td>15</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>London, UK</td>
<td>Schrag and Quinn 2000</td>
<td>5</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Delhi, India</td>
<td>Denney and Behari 1999</td>
<td>3</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Grandas et al 1999</td>
<td>4</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>Kansas, USA</td>
<td>Miyawaki et al 1997</td>
<td>0.5</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>London, UK</td>
<td>Poonaw et al 1986</td>
<td>6</td>
<td>52</td>
<td>54</td>
</tr>
</tbody>
</table>

Levodopa motor complications: Community-based and open studies

Levodopa motor complications: Community-based and open studies

<table>
<thead>
<tr>
<th>Study site</th>
<th>Authors</th>
<th>L-dopa years</th>
<th>Motor fluct %</th>
<th>Dyskinesias %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torso, Estonia</td>
<td>Kadunski et al 2017</td>
<td>4</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Norway</td>
<td>Bjornstad et al 2016</td>
<td>5</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>Aberdeen, UK</td>
<td>Scott et al 2015</td>
<td>5</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Hashim et al 2014</td>
<td>3</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Lopez et al 2010</td>
<td>3</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Kum et al 2009</td>
<td>5</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Istanbul, Turkey</td>
<td>Brender et al 2006</td>
<td>6.5</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>Sydney, Australia</td>
<td>Hely et al 2005</td>
<td>15</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>London, UK</td>
<td>Schrag and Quinn 2000</td>
<td>5</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Delhi, India</td>
<td>Denney and Behari 1999</td>
<td>3</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Grandas et al 1999</td>
<td>4</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>Kansas, USA</td>
<td>Miyawaki et al 1997</td>
<td>0.5</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>London, UK</td>
<td>Poonaw et al 1986</td>
<td>6</td>
<td>52</td>
<td>54</td>
</tr>
</tbody>
</table>

Levodopa motor complications: Community-based and open studies

Levodopa motor complications: Community-based and open studies

<table>
<thead>
<tr>
<th>Study site</th>
<th>Authors</th>
<th>L-dopa years</th>
<th>Motor fluct %</th>
<th>Dyskinesias %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torso, Estonia</td>
<td>Kadunski et al 2017</td>
<td>4</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Norway</td>
<td>Bjornstad et al 2016</td>
<td>5</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>Aberdeen, UK</td>
<td>Scott et al 2015</td>
<td>5</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Hashim et al 2014</td>
<td>3</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Lopez et al 2010</td>
<td>3</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Kum et al 2009</td>
<td>5</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Istanbul, Turkey</td>
<td>Brender et al 2006</td>
<td>6.5</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>Sydney, Australia</td>
<td>Hely et al 2005</td>
<td>15</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>London, UK</td>
<td>Schrag and Quinn 2000</td>
<td>5</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Delhi, India</td>
<td>Denney and Behari 1999</td>
<td>3</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Grandas et al 1999</td>
<td>4</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>Kansas, USA</td>
<td>Miyawaki et al 1997</td>
<td>0.5</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>London, UK</td>
<td>Poonaw et al 1986</td>
<td>6</td>
<td>52</td>
<td>54</td>
</tr>
</tbody>
</table>

Levodopa motor complications: Community-based and open studies

Levodopa motor complications: Community-based and open studies

<table>
<thead>
<tr>
<th>Study site</th>
<th>Authors</th>
<th>L-dopa years</th>
<th>Motor fluct %</th>
<th>Dyskinesias %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torso, Estonia</td>
<td>Kadunski et al 2017</td>
<td>4</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>Norway</td>
<td>Bjornstad et al 2016</td>
<td>5</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>Aberdeen, UK</td>
<td>Scott et al 2015</td>
<td>5</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Hashim et al 2014</td>
<td>3</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Lopez et al 2010</td>
<td>3</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Kum et al 2009</td>
<td>5</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Istanbul, Turkey</td>
<td>Brender et al 2006</td>
<td>6.5</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>Sydney, Australia</td>
<td>Hely et al 2005</td>
<td>15</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>London, UK</td>
<td>Schrag and Quinn 2000</td>
<td>5</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Delhi, India</td>
<td>Denney and Behari 1999</td>
<td>3</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td>Grandas et al 1999</td>
<td>4</td>
<td>44</td>
<td>64</td>
</tr>
<tr>
<td>Kansas, USA</td>
<td>Miyawaki et al 1997</td>
<td>0.5</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>London, UK</td>
<td>Poonaw et al 1986</td>
<td>6</td>
<td>52</td>
<td>54</td>
</tr>
</tbody>
</table>

Medication induced tremor

- Medication: | Tremor character
- Amantadine: | Clinically similar to essential tremor, 6–10 Hz action tremor
- Tricyclic, serotonin reuptake inhibitor, monoamine oxidase inhibitor: | Generalized action tremor, 8–11 Hz
- Tetrabenazine, Margaret: | Rest and action tremor, low amplitude and high frequency
- Citalopram: | Rest and action tremor
- Clonazepam: | Generalized action tremor, rarely cerebellar tremor, treatment with propranolol
- Valproic acid: | Postural and action tremor
- Valproate sodium: | Rest and postural tremor
- Lithium: | Rest postural tremor, irregular, not rhythmic tremor in arm/legs, treatment with primidone/bi-histidine
- Lorazepam: | Rest and postural tremor (d-7 Hz), tardive tremor as postural tremor 3–5 Hz, utterances
- Risperidone: | Low amplitude, high frequency tremor
- Phenobarbital: | High frequency, low amplitude postural tremor
- Baclofen: | Myoclonus, from 4–8 Hz to 12–15 Hz tremor

Drugs – analgesics and anesthetics

- MEPERIDINE (methadone)
 - Opioid for pain treatment
 - Rarely reported
 - Tardive, myoclonus, seizures
 - Agitation, hallucinations
 - A case of reversible parkinsonism described

- METHADONE
 - Synthetic opioid
 - Treatment of pain and opioid dependence
 - Causes rarely chorea or tremor

- PHENCYCLIDONE
 - Anesthetic, similar to ketamine
 - Eaten, snorted or injected in recreational purposes
 - Agitation, psychosis
 - Rigidity, dyskinesia, ataxia, akathisia, myoclonus

- 5-HYDROXYTRYPTIC ACID (5HT)
 - Used for treatment of narcolepsy and as a general anesthetic
 - Recreational drug
 - Overdose: myoclonus and seizures
 - Withdrawal: chorea and tremor
ILLICIT DRUGS

<table>
<thead>
<tr>
<th>Amphetamine-related</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine (Amph)</td>
<td>Cocaine</td>
</tr>
<tr>
<td>Methamphetamine (Meth)</td>
<td>Heroin / heroin pyrolysate</td>
</tr>
<tr>
<td>Methylene-dioxy-methamphetamine (MDMA/ecstasy)</td>
<td>1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>Methadone</td>
</tr>
<tr>
<td>Cathinone (Khat)</td>
<td>Meperidine</td>
</tr>
<tr>
<td>Methcathinone (Mcat)</td>
<td>γ-hydroxybutyric acid</td>
</tr>
<tr>
<td>Mephedrone, methylene, ethylone, naphyrone, ...</td>
<td>Toluene</td>
</tr>
</tbody>
</table>

Chemist’s Notebook Manual – receipts in Internet

- Methamphetamine – Crystal Meth, Speed
- Methcathinone – Cat, Jeff
- GHB – Liquid E, Date Rape Drug
- MDMA – Ecstasy, X
- Phencyclidine – PCP, Angel Dust
- Cocaine – Coke, Blow
- Opiates – Heroin, Codeine
- Marijuana – Weed, Bud
- Psilocybin – Shrooms, Caps
- Salvia Divinorum – Dream Herb, Salvia
- DMT & 5-MeO-DMT – Toad Venom
- Ketamine – Special K
- Dextrometorphane – DXM, Red Devil’s

History: MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and parkinsonism

- Used in 1980ies in California intravenously as a new “synthetic heroin”
- By-product in the synthesis of MPPP
- Parkinsonism - during some months
- Similar to Parkinson’s disease:
 - Rigidity and hypokinesia
 - Gait disorder; speech disorder
 - Rarely tremor
 - Hallucinations often as initial signs
 - Levodopa treatment effective
 - Early dyskinesias and ‘on-off’ fluctuations

Global Drug Survey

Use of psychostimulants

80 000 responses reported use during the past 12 months:
- 23.7% MDMA (“ecstasy”)
- 16.4% cocaine
- 11.7% amphetamine
- 7.5% “research chemicals and legal highs” (bath salts)

Amphetamines

- Increase of dopamine, norepinephrine and serotonin release
- Amphetamine – synthesised in 1887 in Germany by Lazar Edeleanu; pharmacological use in 1929 by Gordon Alles
- Used for treatment of narcolepsy, attention deficit hyperactivity disorder, obesity, chronic fatigue
- Agitation, confusion, psychosis
- Levo- and dextroisomers

High dosage – neurotoxic
- Free radicals
- Excitotoxicity
- Apoptosis
- Mitochondrial dysfunction

Neurodegeneration affecting basal ganglia
- Neuronal loss
- Reduction of glial astrocytes
- Changes in microvasculature
Amphetamine and methamphetamine

- Increase of dopamine, norepinephrine and serotonin release
- Methamphetamine – synthesised from ephedrine in 1893
- Amphetamine – synthesised in 1887; pharmacological use from 1929 by Gordon Alles:
 - Narcolepsy, attention deficit hyperactivity disorder, obesity, fatigue
- Movement disorders may develop during abuse or abstinence
- Choreaathetosis, tremor, dystonia, araxia, gait disturbances
- Usually resolve within few days but may last longer
- Benzodiazepines or euroleptics may be of benefit

Metamphetamine/ Amphetamine and parkinsonism?

- Are chronic Meth/ Amph users at risk to develop parkinsonism?
- Do the changes reflect degenerative disorder, or are induced by the drug toxicity?
- - but
- Clinically, parkinsonism has not been described
- Reduction in DAT density is different from Parkinson disease – less extent in putamen
- - still
- Population-based cohort study in California (1990-2005): Meth/ Amph users have increased risk for PD but not cocaine users

Case

Ecstasy and parkinsonism?

- 38 years man
- Heavy use of ecstasy for 12 years
- Rapidly progressive parkinsonism
- Poor effect of medication and DBS
- 19 years man
- Used 6 month use of MDMA
- Tremor and parkinsonism
- Antiparkinsonian medication - poor effect

Methylphenidate (MPH, MPD)

- Psychostimulant used for the treatment of
 - Attention-deficit hyperactivity disorder (ADHD)
 - Narcolepsy
 - Postural orthostatic syndrome
 - Weight control
- Recreational drug
- May induce chorea, tics, dyskinesias
- British National Formulary (2011: p. 246)
 - Indications: ADHD, narcolepsy (adult and children)
 - Side-effects of MPH: tics, movement disorders

Methcathinone (Mcat) / ephedrine

- Used as antidepressant 1930-1940
- Amphetamine-like effect
- Abused as a ‘designer’ psychostimulant
 - Sudafed tablets (pseudoephedrine)
 - Boiling water
 - Potassium permanganate
 - Acetic acid
- 10-20 injections per day
- Estimated daily load of
 - manganese: 60-180 mg
 - Mcat: 400-1200 mg
Mcat abusers and manganism
- Clinical syndrome develops during months-years
 - Parkinsonism: bradykinesia
 - Limb and face dystonias
 - Dysarthria, hypophonia
 - Gait disorder, postural instability, falls
- Severity varies greatly
- Unresponsive to levodopa
- May worsen despite drug discontinuation

Neurological complications of psychostimulants

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neurological adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine</td>
<td>Tremor, choreoathetosis, dystonias, ataxia, gait disorder</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>Choreoathetosis, dystonias, tremor, ataxia, seizures</td>
</tr>
<tr>
<td>MDMA (Ecstasy)</td>
<td>Tremor, dystonias, parkinsonism, restless legs, seizures</td>
</tr>
<tr>
<td>Methylenedioxane</td>
<td>Anxiety, hyperactivity, stereotypical movements</td>
</tr>
<tr>
<td>Cathinone</td>
<td>Tremor; Memory disorder; depression, psychosis, insomnia</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>Tremor, myoclonus, choreoathetosis; Cognitive disorder</td>
</tr>
<tr>
<td>Methcathinone</td>
<td>Parkinsonism, dystonias, speech disorder, postural instability, falls</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Tremor, tics, dystonias, parkinsonism, chorea, akathisia</td>
</tr>
</tbody>
</table>

Cocaine
- Alkaloid coca-plant leaves – South American indigenous chewed
- Described in the 16th century; isolated 1855 by German chemist Friedrich Gaedcke
- Neuropathological investigation: α-synuclein levels in DA cells elevated
- ‘Crack dancing’ – smokable cocaine
- In chronic cocaine abuse
- Reversible choreoathetoid limb movements or akathisia
- Orofacial dyskinesias
- Rarely: neuroleptic malignant syndrome following to delirium

Heroin
- Intravenous heroin
 - Euphoria followed by dream-like state
 - Overdose
 - coma, respiration depression
 - brain anoxia, ischaemia
 - Borderzone infarction
 - Tremor, rigidity, myoclonus, dystonias, ballism, ataxia, cognitive impairment, oculogyric crises
 - MRI: gray matter lesion in basal ganglia
 - Section: bilateral cystic infarcts in gl. pallidum

Heroin pyrolysate – ‘chasing the dragon’
- Heroin pyrolysate ‘chasing the dragon’ – inhalation, heating the drug on metal foil
- Spongiform encephalopathy
 - Ataxia, dystonia, myoclonus, chorea
 - Apathy, confusion
 - Spastic paraparesis or tetraparesis
 - Pseudobulbar palsy
 - Late stages – parkinsonism
- Neuropathology
 - Spongiform degeneration of deep white matter
 - Vasculitis, loss of oligodendrocytes, axonal reduction, astrogliosis

Plants with psychedelic effects
- Peyote cactus (*Lophophora williamsii*)
 - Contains mescaline
 - Dyskinesia, chorea
- Angel trumpet flower (genus *Datura*)
 - Contains tropane alcaloids
 - Blurred vision, speech disorder, hallucinations
 - Chorea, ballism, ataxia, seizures
- Kava kava (*piper methysticum*)
 - Contains kavapyrones
 - Ceremonial beverage in the Pacific and Australia
 - Muscle relaxation, anaesthesia, anxiolytic
 - Choreoathetosis, dystonias, parkinsonism
Conclusions

Drug induced movement disorders can represent MEDICAL EMERGENCIES
• Neuroleptic malignant syndrome
• Serotonin syndrome
• Toxic conditions due to illicit drugs

Variable phenotypic manifestations
• Suboptimal treatment
• No preventive treatments
• The most important – avoiding exposure

• Amanita muscaria
• Hallucinogens: muscimol, ibotenic acid
• Oswald Schmiedeberg - Dept of Materia Medica in Tartu, 1847-1867
 – Described muscarine and its antagonism with atropine – a basis for the theory about antagonism of poisons and antidotes
 – Proved that nerve endings can be pharmacologically selectively influenced: founded pharmacology of synaptic transmission